Colloid Journal

, Volume 74, Issue 2, pp 266–268 | Cite as

Capillary pressure of van der Waals liquid nanodrops

  • R. Tsekov
  • B. V. Toshev


The dependence of the surface tension on nanodrop radius is important for the new-phase formation process. It is demonstrated that the famous Tolman formula is not unique and the size-dependence of the surface tension can distinct for different systems. The analysis is based on a relationship between the surface tension and disjoining pressure in nanodrops. It is shown that the van der Waals interactions do not affect the new-phase formation thermodynamics since the effects of the disjoining pressure and size-dependent component of the surface tension cancel each other.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Volmer, M., Kinetik der Phasenbildung, Leipzig: Steinkopff, 1939.Google Scholar
  2. 2.
    Rusanov, A.I., Phasengleichgewichte und Grenzflachenerscheinungen, Berlin: Akademie, 1978.Google Scholar
  3. 3.
    Ono, S. and Kondo, S., Molecular Theory of Surface Tension in Liquids, Berlin: Springer, 1960.Google Scholar
  4. 4.
    Tolman, R., J. Chem. Phys., 1949, vol. 17, p. 333.CrossRefGoogle Scholar
  5. 5.
    Gibbs, J.W., The Scientific Papers of J. Willard Gibbs: Thermodynamics, Oxford: Bow, 1993.Google Scholar
  6. 6.
    Konig, F., J. Chem. Phys., 1950, vol. 18, p. 449.CrossRefGoogle Scholar
  7. 7.
    Nishioka, K., Phys. Rev. A, 1987, vol. 36, p. 4845.CrossRefGoogle Scholar
  8. 8.
    Rusanov, A.I. and Brodskaya, E., J. Colloid Interface Sci., 1977, vol. 62, p. 542.CrossRefGoogle Scholar
  9. 9.
    Falls, A., Scriven, L., and Davis, H.T., J. Chem. Phys., 1981, vol. 75, p. 3986.CrossRefGoogle Scholar
  10. 10.
    Phillips, P., Mol. Phys., 1984, vol. 52, p. 805.CrossRefGoogle Scholar
  11. 11.
    Schmelzer, J. and Mahnke, R., J. Chem. Soc., Faraday Trans. 1, 1986, vol. 82, p. 1413.CrossRefGoogle Scholar
  12. 12.
    Schmelzer, J., J. Chem. Soc., Faraday Trans. 1, 1986, vol. 82, p. 1421.CrossRefGoogle Scholar
  13. 13.
    Iwamatsu, M., J. Phys.: Condens. Matter, 1994, vol. 6, p. L173.CrossRefGoogle Scholar
  14. 14.
    Brodskaya, E., Eriksson, J.C., Laaksonen, A., and Rusanov, A.I., J. Colloid Interface Sci., 1996, vol. 180, p. 86.CrossRefGoogle Scholar
  15. 15.
    Derjaguin, B.V., Kolloidn. Zh., 1955, vol. 17, p. 205.Google Scholar
  16. 16.
    Hamaker, H., Physica A (Amsterdam), 1937, vol. 4, p. 1058.CrossRefGoogle Scholar
  17. 17.
    London, F., Z. Phys. Chem. B, 1936, vol. 11, p. 246.Google Scholar
  18. 18.
    Toshev, B.V. and Platikanov, D., Adv. Colloid Interface Sci., 1992, vol. 40, p. 157.CrossRefGoogle Scholar
  19. 19.
    Churaev, N.V., Starov, V.M., and Derjaguin, B.V., J. Colloid Interface Sci., 1982, vol. 89, p. 16.CrossRefGoogle Scholar
  20. 20.
    De Feijter, J.A. and Vrij, A., Electroanal. Chem., 1972, vol. 37, p. 9.CrossRefGoogle Scholar
  21. 21.
    Eriksson, J.C. and Toshev, B.V., Colloid Polym. Sci., 1986, vol. 264, p. 807.CrossRefGoogle Scholar
  22. 22.
    Tsekov, R., Stockelhuber, K.W., and Toshev, B.V., Langmuir, 2000, vol. 16, p. 3502.CrossRefGoogle Scholar
  23. 23.
    Rusanov, A.I., Surf. Sci. Rep., 2005, vol. 58, p. 111.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • R. Tsekov
    • 1
  • B. V. Toshev
    • 1
  1. 1.Department of Physical ChemistryUniversity of SofiaSofiaBulgaria

Personalised recommendations