Colloid Journal

, Volume 73, Issue 1, pp 118–127 | Cite as

On the measurement of gold nanoparticle sizes by the dynamic light scattering method

  • B. N. Khlebtsov
  • N. G. Khlebtsov


The application of the dynamic light scattering (DLS) method for determining the size distribution of colloidal gold nanoparticles in a range of 1–100 nm is discussed. It is shown that rotational diffusion of nonspherical strongly scattering particles with sizes of larger than 30–40 nm results in the appearance of a false peak in a size range of about 5–10 nm. In this case, the uncritical application of the DLS method may yield particle volume or number size distributions different from those obtained by transmission electron microscopy. For weakly scattering particles with diameters of smaller that 20 nm, the DLS method demonstrates an additional peak of intensity distribution in the region of large sizes that is related to particle aggregates or byproduct particles rather than individual nanoparticles. Practical methods for solving the problem of false peaks are discussed. It is established that the width of the DLS distribution does not correspond to transmission electron microscopy data and is overestimated. The advantages and drawbacks of the methods are compared and it is noted that, at present, the DLS method is the only instrument suitable for nonperturbative and sensitive diagnostics of relatively slow aggregation processes with characteristic times on the order of 1 min. In particular, this method can be used to diagnose gold nanoparticle conjugate aggregation initiated by biospecific interactions on their surface.


Dynamic Light Scattering Particle Volume Colloid Journal Rotational Diffusion Transmission Electron Microscopy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dynamic Light Scattering. Applications of Photon Correlation Spectroscopy, Pecora, R., Ed., New York-London: Plenum, 1985.Google Scholar
  2. 2.
    Meyer, W.V., Smart, A.E., Wegdam, G.H., and Brown, R.G.W., Appl. Opt., 2006, vol. 45, p. 2149.CrossRefGoogle Scholar
  3. 3.
    Noskin, V.A., Doctoral (Phys.-Math.) Dissertation, Gatchina: Leningrad Inst. of Nuclear Physics, 1983.Google Scholar
  4. 4.
    Berne, B.J. and Pecora, R., Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics, New York: Dover, 2000.Google Scholar
  5. 5.
    Dykman, L.A., Bogatyrev, V.A., Shchegolev, S.Yu., and Khlebtsov, N.G., Zolotye nanochastitsy: Sintez, svoistva, biomeditsinskoe primenenie (Gold Nanoparticles: Synthesis, Properties, Biomedical Applications), Moscow: Nauka, 2008.Google Scholar
  6. 6.
    Khlebtsov, N.G. and Dykman, L.A., J. Quant. Spectrosc. Radiat. Transfer, 2010, vol. 11, p. 1.CrossRefGoogle Scholar
  7. 7.
    Khlebtsov, N.G., Bogatyrev, V.A., Khlebtsov, B.N., et al., Kolloidn. Zh., 2003, vol. 65, no. 5, p. 679.Google Scholar
  8. 8.
    Jans, H., Liu, X., Austin, L., et al., Anal. Chem., 2009, vol. 81, p. 9425.CrossRefGoogle Scholar
  9. 9.
    Kalluri, J.R., Arbneshi, T., Khan, S.A., et al., Angew. Chem., 2009, vol. 48, p. 9668.Google Scholar
  10. 10.
    Liu, X., Dai, Q., Austin, L., et al., J. Am. Chem. Soc., 2008, vol. 130, p. 2780.CrossRefGoogle Scholar
  11. 11.
    Witten, K.G., Bretschneider, J.C., Eckert, T., Richtering, W., and Simon, U., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 1870.CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Jack, R.O., McNeil-Watson, F., Kelly, J.M., et al., Abstracts of Papers, ECIS 2008 Conf., Cracow: Cracow Univ., 2008, p. 201.Google Scholar
  14. 14.
    Khlebtsov, N.G., Kvant. Elektron., 2008, vol. 38, p. 504.CrossRefGoogle Scholar
  15. 15.
    Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., and Melnikov, A.G., J. Colloid Interface Sci., 1996, vol. 180, p. 436.CrossRefGoogle Scholar
  16. 16.
    Brown, K.R., Walter, D.G., and Natan, M., J. Chem. Mater., 2000, vol. 12, p. 306.CrossRefGoogle Scholar
  17. 17.
    Van der Zande, B.M.I., Dhont Jan, K.G., Bohmer, M.R., and Philipse, A.P., Langmuir, 2000, vol. 16, p. 459.CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Fernandez, J., Perez-Juste, J., Liz-Marzan, L.M., and Lang, P.R., J. Phys. Chem. C, 2007, vol. 111, p. 5020.CrossRefGoogle Scholar
  19. 19.
    Maltsev, V.P., Rev. Sci. Instrum., 2000, vol. 71, p. 243.CrossRefGoogle Scholar
  20. 20.
    Maltsev, V.P., Chernyshev, A.V., Semyanov, K.A., and Soini, E., Appl. Opt., 1996, vol. 35, p. 3275.CrossRefGoogle Scholar
  21. 21.
    Shifrin, K.S. and Tonna, G., Adv. Geophys., 1993, vol. 34, p. 175.CrossRefGoogle Scholar
  22. 22.
    Khlebtsov, B.N., Khanadeev, V.A., and Khlebtsov, N.G., Langmuir, 2008, vol. 24, p. 8964.CrossRefGoogle Scholar
  23. 23.
    Khlebtsov, B.N., Bogatyrev, V.A., Dykman, L.A., and Khlebtsov, N.G., Opt. Spektrosk., 2007, vol. 102, p. 273.CrossRefGoogle Scholar
  24. 24.
    Khlebtsov, N.G., Kolloidn. Zh., 2003, vol. 65, p. 710.Google Scholar
  25. 25.
    Klyubin, V.V., Kruglova, L.A., Sakharova, H.A., and Tallier, Yu.A., Kolloidn. Zh., 1990, vol. 52, p. 470.Google Scholar
  26. 26.
    Klyubin, V.V. and Bungov, V.N., Kolloidn. Zh., 1998, vol. 60, p. 344.Google Scholar
  27. 27.
    Njoki, P.N., Lim, I.-I.S., Mott, D., et al., J. Phys. Chem. B, 2007, vol. 111, p. 14664.Google Scholar
  28. 28.
    Haiss, W., Thanh, N.T.K., Aveard, J., and Fernig, D.G., Anal. Chem., 2007, vol. 79, p. 4215.CrossRefGoogle Scholar
  29. 29.
    Khlebtsov, N.G., Anal. Chem., 2008, vol. 8, p. 6620.CrossRefGoogle Scholar
  30. 30.
    Bogatyrev, V.A., Dykman, L.A., Krasnov, Ya.M., et al., Kolloidn. Zh., 2002, vol. 64, p. 745.Google Scholar
  31. 31.
    Bogatyrev, V.A., Dykman, L.A., Khlebtsov, B.N., and Khlebtsov, N.G., Opt. Spektrosk., 2004, vol. 96, p. 139.CrossRefGoogle Scholar
  32. 32.
    Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., et al., J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 89, p. 133.CrossRefGoogle Scholar
  33. 33.
    Khlebtsov, B.N., Zharov, V.P., Melnikov, A.G., et al., Nanotechnology, 2006, vol. 17, p. 5167.CrossRefGoogle Scholar
  34. 34.
    Pylaev, T.E., Khanadeev, V.A., Khlebtsov, et al., Abstracts of Papers, The 2nd Int. Competition of Scientific Papers in Nanotechnology for Young Scientists Rusnanotech 09, Moscow: Rosnanotekh, 2009, p. 501.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Saratov State UniversitySaratovRussia

Personalised recommendations