Colloid Journal

, Volume 71, Issue 4, pp 520–528 | Cite as

Stages of steady diffusion growth of a gas bubble in strongly supersaturated gas-liquid solution

  • A. E. Kuchma
  • G. Yu. Gor
  • F. M. Kuni


Gas bubble growth as a result of diffusion flux of dissolved gas molecules from the surrounding supersaturated solution to the bubble surface is studied. The condition of the flux steadiness is revealed. A limitation from below on the bubble radius is considered. Its fulfillment guarantees the smallness of fluctuation influence on bubble growth and irreversibility of this process. Under the conditions of steadiness of diffusion flux three stages of bubble growth are marked out. Taking into account Laplace forces in the bubble, intervals of bubble size change and time intervals of these stages are found. The trend of the third stage towards the self-similar regime of the bubble growth, when Laplace forces in the bubble are completely neglected, is described analytically.


Bubble Size Colloid Journal Bubble Growth Bubble Radius Bubble Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vols. 11–12, p. 525.Google Scholar
  2. 2.
    Derjaguin, B.V., Prokhorov, A.V., and Tunitskii, N.N., Zh. Eksp. Teor. Fiz., 1977, vol. 73, p. 1831.Google Scholar
  3. 3.
    Skripov, V.P., Metastable Liquid, New York: Wiley, 1974.Google Scholar
  4. 4.
    Baidakov, V.G., Explosive Boiling of Superheated Cryogenic Liquids, Berlin: Wiley-VCH, 2007.CrossRefGoogle Scholar
  5. 5.
    Epstein, P.S. and Plesset, M.S., J. Chem. Phys., 1950, vol. 18, p. 1505.CrossRefGoogle Scholar
  6. 6.
    Cable, M. and Frade, J.R., Proc. R. Soc. London, A, 1988, vol. 420, p. 247.CrossRefGoogle Scholar
  7. 7.
    Kuni, F.M., Ogenko, V.M., Ganyuk, L.N., and Grechko, L.G., Kolloidn. Zh., 1993, vol. 55, no. 2, p. 22.Google Scholar
  8. 8.
    Kuni, F.M., Ogenko, V.M., Ganyuk, L.N., and Grechko, L.G., Kolloidn. Zh., 1993, vol. 55, no. 2, p. 28.Google Scholar
  9. 9.
    Melikhov, A.A., Trofimov, Yu.V., and Kuni, F.M., Kolloidn. Zh., 1994, vol. 56, no. 2, p. 91.Google Scholar
  10. 10.
    Kuni, F.M. and Zhuvikina, I.A., Kolloidn. Zh., 2002, vol. 64, p. 188.Google Scholar
  11. 11.
    Kuni, F.M., Zhuvikina, I.A., and Grinin, A.P., Kolloidn. Zh., 2003, vol. 65, p. 227.Google Scholar
  12. 12.
    Slezov, V.V., Abyzov, A.S., and Slezova, Zh.V., Kolloidn. Zh., 2004, vol. 66, p. 643.Google Scholar
  13. 13.
    Slezov, V.V., Abyzov, A.S., and Slezova, Zh.V., Kolloidn. Zh., 2005, vol. 67, no. 1, p. 94.Google Scholar
  14. 14.
    Chernov, A.A., Zh. Prikl. Mekh. Tekh. Fiz., 2003, vol. 44, p. 80.Google Scholar
  15. 15.
    Chernov, A.A., Kedrinskii, V.K., and Davydov, M.N., Zh. Prikl. Mekh. Tekh. Fiz., 2004, vol. 45, p. 162.Google Scholar
  16. 16.
    Grinin, A.P., Kuni, F.M., and Gor, G.Yu., Kolloidn. Zh., 2009, vol. 71, p. 47.Google Scholar
  17. 17.
    Landau, L.D. and Lifshitz, E.M., Statisticheskaya fizika (Theoretical Physics: Statistical Physics), Moscow: Nauka, 1976.Google Scholar
  18. 18.
    Lifshitz, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (Physical Kinetics), Moscow: Nauka, 1979.Google Scholar
  19. 19.
    Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., et al., Eds., Moscow: GNTI Khim. Lit., 1963.Google Scholar
  20. 20.
    Kratkii spravochnik fiziko-khimicheskikh velichin (Abridged Handbook of Physicochemical Quantities), Mishchenko, K.P. and Ravdel’, A.A., Eds., Leningrad: Khimiya, 1974.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. E. Kuchma
    • 1
  • G. Yu. Gor
    • 1
  • F. M. Kuni
    • 1
  1. 1.Institute of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations