Colloid Journal

, Volume 69, Issue 4, pp 411–424 | Cite as

Formation of superhydrophobic surfaces by the deposition of coatings from supercritical carbon dioxide

  • M. O. Gallyamov
  • L. N. Nikitin
  • A. Yu. Nikolaev
  • A. N. Obraztsov
  • V. M. Bouznik
  • A. R. Khokhlov
Article

Abstract

The deposition of uniform coatings of fluorinated polymers from solutions in supercritical carbon dioxide on a number of rough substrates allowed superhydrophobic (ultrahydrophobic) properties to be imparted to their surfaces, and, namely, to increase the value of the contact angle for water droplet to 150° and greater. The dynamics of changing of geometry of a drying droplet on a substrate is studied. A procedure is developed that permits the penetration of water into the substrate to be detected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthlott, W. and Neinhuis, C., Planta, 1997, vol. 202, p. 1.CrossRefGoogle Scholar
  2. 2.
    Wenzel, R.N., Ind. Eng. Chem., 1936, vol. 28, p. 988.CrossRefGoogle Scholar
  3. 3.
    Cassie, A.B.D. and Baxter, S., Trans. Faraday Soc., 1944, vol. 40, p. 546.CrossRefGoogle Scholar
  4. 4.
    Quéré, D., Lafuma, A., and Bico, J., Nanotecnology, 2003, vol. 14, p. 1109.CrossRefGoogle Scholar
  5. 5.
    McHale, G., Shirtcliffe, N.J., and Newton, M.I., Langmuir, 2004, vol. 20, p. 10146.Google Scholar
  6. 6.
    Johnson, R.E. and Dettre, R.U., Adv. Chem. Ser., 1964, no. 43.Google Scholar
  7. 7.
    Nakajima, A., Hashimoto, K., and Watanabe, T., Monatsh. Chem., 2001, vol. 132, p. 31.Google Scholar
  8. 8.
    Feng, L., Li, S., Li, Y., et al., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2002, vol. 14, p. 1857.CrossRefGoogle Scholar
  9. 9.
    Quéré, D., Nature Mater., 2002, vol. 1, p. 14.CrossRefGoogle Scholar
  10. 10.
    Blossey, R., Nature Mater., 2003, vol. 2, p. 301.CrossRefGoogle Scholar
  11. 11.
    Gould, P., Mater. Today, 2003, vol. 6, no. 11, p. 44.CrossRefGoogle Scholar
  12. 12.
    Otten, A. and Herminghaus, S., Langmuir, 2004, vol. 20, p. 2405.CrossRefGoogle Scholar
  13. 13.
    Sun, T., Feng, L., Gao, X., and Jiang, L., Acc. Chem. Res., 2005, vol. 38, p. 644.CrossRefGoogle Scholar
  14. 14.
    Quéré, D., Rep. Prog. Phys., 2005, vol. 68, p. 2495.CrossRefGoogle Scholar
  15. 15.
    Lafuma, A. and Quéré, D., Nature Mater., 2003, vol. 2, p. 457.CrossRefGoogle Scholar
  16. 16.
    Cheng, Y.-T. and Rodak, D.E., Appl. Phys. Lett., 2005, vol. 86, p. 144101.Google Scholar
  17. 17.
    Wier, K.A. and McCarthy, T.J., Langmuir, 2006, vol. 22, p. 2433.CrossRefGoogle Scholar
  18. 18.
    Sugimoto, H. and Ohashi, M. Jpn. Patent 11116278, 1999.Google Scholar
  19. 19.
    McHugh, M.A., Mertdogan, C.A., DiNoia, T.P., et al., Macromolecules, 1998, vol. 31, p. 2252.CrossRefGoogle Scholar
  20. 20.
    Henon, F.E., Camaiti, M., Burke, A., et al., J. Supercrit. Fluids, 1999, vol. 15, p. 173.CrossRefGoogle Scholar
  21. 21.
    Rindfleisch, F., DiNoia, T.P., and McHugh, M.A., J. Phys. Chem., 1996, vol. 100, p. 15581.Google Scholar
  22. 22.
    Kirby, C.F. and McHugh, M.A., Chem. Rev., 1999, vol. 99, p. 565.CrossRefGoogle Scholar
  23. 23.
    Petersen, R.C., Matson, D.W., and Smith, R.D., J. Am. Chem. Soc., 1986, vol. 108, p. 2100.CrossRefGoogle Scholar
  24. 24.
    Matson, D.W., Fulton, J.L., Petersen, R.C., and Smith, R.D., Ind. Eng. Chem. Res., 1987, vol. 26, p. 2298.CrossRefGoogle Scholar
  25. 25.
    Kim, J.-H., Paxton, T.E., and Tomasko, D.L., Biotechnol. Prog., 1996, vol. 12, p. 650.CrossRefGoogle Scholar
  26. 26.
    Shim, J.-J., Yates, M.Z., and Johnston, K.P., Ind. Eng. Chem. Res., 1999, vol. 38, p. 3655.CrossRefGoogle Scholar
  27. 27.
    Tepper, G. and Levit, N., Ind. Eng. Chem. Res., 2000, vol. 39, p. 4445.CrossRefGoogle Scholar
  28. 28.
    Chernyak, Y., Henon, F., Harris, R.B., et al., Ind. Eng. Chem. Res., 2001, vol. 40, p. 6118.CrossRefGoogle Scholar
  29. 29.
    Matsuyama, K., Mishima, K., Umemoto, H., and Yamaguchi, S., Environ. Sci. Technol., 2001, vol. 35, p. 4149.CrossRefGoogle Scholar
  30. 30.
    Wang, T.-J., Tsutsumi, A., Hasegawa, H., and Mineo, T., Powder Technol., 2001, vol. 118, p. 229.CrossRefGoogle Scholar
  31. 31.
    Wang, Y., Wei, D., Dave, R., et al., Powder Technol., 2002, vol. 127, p. 32.CrossRefGoogle Scholar
  32. 32.
    Levit, N., Pestov, D., and Tepper, G., Sens. Actuators, B, 2002, vol. 82, p. 241.CrossRefGoogle Scholar
  33. 33.
    Fulton, J.L., Deverman, G.S., Yonker, C.R., et al., Polymer, 2003, vol. 44, p. 3627.CrossRefGoogle Scholar
  34. 34.
    Inoue, H., Jpn. Patent 2001314810, 2001.Google Scholar
  35. 35.
    Mawson, S., Johnston, K.P., Betts, D.E., et al., Macromolecules, 1997, vol. 30, p. 71.CrossRefGoogle Scholar
  36. 36.
    Reverchon, E., J. Supercrit. Fluids, 1999, vol. 15, p. 1.CrossRefGoogle Scholar
  37. 37.
    Elvassore, N., Bertucco, A., and Caliceti, P., Ind. Eng. Chem. Res., 2001, vol. 40, p. 795.CrossRefGoogle Scholar
  38. 38.
    Chattopadhyay, P. and Gupta, R.B., Ind. Eng. Chem. Res., 2000, vol. 39, p. 2281.CrossRefGoogle Scholar
  39. 39.
    Chattopadhyay, P. and Gupta, R.B., Ind. Eng. Chem. Res., 2001, vol. 40, p. 3530.CrossRefGoogle Scholar
  40. 40.
    Chattopadhyay, P. and Gupta, R.B., Ind. Eng. Chem. Res., 2002, vol. 41, p. 6049.CrossRefGoogle Scholar
  41. 41.
    Chattopadhyay, P. and Gupta, R.B., Ind. Eng. Chem. Res., 2003, vol. 42, p. 465.CrossRefGoogle Scholar
  42. 42.
    Wang, Y., Dave, R.N., and Pfetter, R., J. Supercrit. Fluids, 2004, vol. 28, p. 85.CrossRefGoogle Scholar
  43. 43.
    Glebov, E.M., Yuan, L., Krishtopa, L.G., et al., Ind. Eng. Chem. Res., 2001, vol. 40, p. 4058.CrossRefGoogle Scholar
  44. 44.
    Hoggan, E.N., Flowers, D., Carbonell, R.G., and DeSimone, J.M., Ind. Eng. Chem. Res., 2004, vol. 43, p. 2113.CrossRefGoogle Scholar
  45. 45.
    Cho, D., Kim, Y.J., Erkey, C., and Koberstein, J.T., Macromolecules, 2005, vol. 38, p. 1829.CrossRefGoogle Scholar
  46. 46.
    Kim, J., Novick, B.J., DeSimone, J.M., and Carbonell, R.G., Langmuir, 2006, vol. 22, p. 642.CrossRefGoogle Scholar
  47. 47.
    Kim, J. and Carbonell, R.G., Langmuir, 2006, vol. 22, p. 2117.CrossRefGoogle Scholar
  48. 48.
    Fukushima, Y. and Wakayama, H., J. Phys. Chem., B, 1999, vol. 103, p. 3062.CrossRefGoogle Scholar
  49. 49.
    Watkins, J.J., Blackburn, J.M., and McCarthy, T.J., Chem. Mater., 1999, vol. 11, p. 213.CrossRefGoogle Scholar
  50. 50.
    Ye, X.R., Wai, C.M., Zhang, D., et al., Chem. Mater., 2003, vol. 15, p. 83.CrossRefGoogle Scholar
  51. 51.
    Cabanas, A., Shan, X., and Watkins, J.J., Chem. Mater., 2003, vol. 15, p. 2910.CrossRefGoogle Scholar
  52. 52.
    Weinstein, R.D., Yan, D., and Jennings, G.K., Ind. Eng. Chem. Res., 2001, vol. 40, p. 2046.CrossRefGoogle Scholar
  53. 53.
    Zemanian, T.S., Fryxell, G.E., Liu, J., et al., Langmuir, 2001, vol. 17, p. 8172.CrossRefGoogle Scholar
  54. 54.
    Efimenko, K., Novick, B., Carbonell, R.G., et al., Langmuir, 2002, vol. 18, p. 6170.CrossRefGoogle Scholar
  55. 55.
    Yan, D., Jennings, G.K., and Weinstein, R.D., Ind. Eng. Chem. Res., 2002, vol. 41, p. 4528.CrossRefGoogle Scholar
  56. 56.
    Luscombe, C.K., Li, H.-W., Huck, W.T.S., and Holmes, A.B., Langmuir, 2003, vol. 19, p. 5273.CrossRefGoogle Scholar
  57. 57.
    Gallyamov, M.O., Vinokur, R.A., Nikitin, L.N., et al., Phys. Low-Dimens. Struct., 2002, vols. 5–6, p. 153.Google Scholar
  58. 58.
    Gallyamov, M.O., Vinokur, R.A., Nikitin, L.N., et al., Langmuir, 2002, vol. 18, p. 6928.CrossRefGoogle Scholar
  59. 59.
    Gallyamov, M.O., Yaminskii, I.V., Khokhlov, A.R., et al., Mikrosist. Tekh., 2003, no. 1, p. 31.Google Scholar
  60. 60.
    Gallyamov, M.O., Yaminskii, I.V., Khokhlov, A.R., et al., Mikrosist. Tekh., 2003, no. 2, p. 11.Google Scholar
  61. 61.
    Gallyamov, M.O., Bouznik, V.M., Tsvetnikov, A.K., et al., Khim. Fiz., 2004, vol. 23, no. 6, p. 76.Google Scholar
  62. 62.
    Shumilkina, N.A., Myakushev, V.D., Tatarinova, E.A., et al., Vysokomol. Soedin., Ser. A, 2006, vol. 48, p. 2102.Google Scholar
  63. 63.
    Gallyamov, M.O., Bouznik, V.M., Tsvetnikov, A.K., et al., Dokl. Akad. Nauk, 2003, vol. 392, p. 77.Google Scholar
  64. 64.
    Gallyamov, M.O., Bouznik, V.M., Tsvetnikov, A.K., et al., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2004, vol. 45, p. 504.Google Scholar
  65. 65.
    McHale, G., Aqil, S., Shirtcliffe, N.J., et al., Langmuir, 2005, vol. 21, p. 11053.Google Scholar
  66. 66.
    Obraztsov, A.N., Zolotukhin, A.A., Ustinov, A.O., et al., Carbon, 2003, vol. 41, p. 836.CrossRefGoogle Scholar
  67. 67.
    Zolotukhin, A.A., Obraztsov, A.N., Ustinov, A.O., and Volkov, A.P., Zh. Eksp. Teor. Fiz., 2003, vol. 124, p. 1291.Google Scholar
  68. 68.
    McHugh, M.A., Seckner, A.J., and Yogan, Th.J., Ind. Eng. Chem. Fundam., 1984, vol. 23, p. 493.CrossRefGoogle Scholar
  69. 69.
    Yau, J.-S. and Tsai, F.-N., J. Chem. Eng. Data, 1993, vol. 38, p. 171.CrossRefGoogle Scholar
  70. 70.
    Reverchon, E., Russo, P., and Stassi, A., J. Chem. Eng. Data, 1993, vol. 38, p. 458.CrossRefGoogle Scholar
  71. 71.
    Chandler, K., Pouillot, F.L.L., and Eckert, C.A., J. Chem. Eng. Data, 1996, vol. 41, p. 6.CrossRefGoogle Scholar
  72. 72.
    Muidinov, M.R., Ross. Khim. Zh., 2002, vol. 46, no. 3, p. 64.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • M. O. Gallyamov
    • 1
  • L. N. Nikitin
    • 2
  • A. Yu. Nikolaev
    • 2
  • A. N. Obraztsov
    • 1
  • V. M. Bouznik
    • 3
  • A. R. Khokhlov
    • 3
  1. 1.Department of PhysicsLomonosov Moscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Physicochemical Problems of Ceramic MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations