Russian Journal of Mathematical Physics

, Volume 26, Issue 3, pp 368–383 | Cite as

A Family of Integrable Perturbed Kepler Systems

  • A. OdzijewiczEmail author
  • A. SliżewskaEmail author
  • E. WawreniukEmail author


In the framework of the Poisson geometry of twistor space we consider a family of perturbed 3-dimensional Kepler systems. We show that Hamilton equations of these systems can be integrated in quadratures. Their solutions for some subcases are given explicitly in terms of Jacobi elliptic functions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms (Birkhäuser Verlag, 2005).Google Scholar
  2. 2.
    T. Goliński and A. Odzijewicz, “Hierarchy of Integrable Hamiltonians Describing the Nonlinear N-Wave Interaction,” J. Phys. A Math. Theor. 45(4), 045204 (14pp) (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Seventh Edition (University of Newcastle upon Tyne, England, 2007).zbMATHGoogle Scholar
  4. 4.
    T. Iwai, “The Geometry of the SU (2) Kepler Problem,” J. Geom. Phys. 7, 507–535 (1990).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. A. Kirillov, Elements of the Theory of Representations (Springer-Verlag, Berlin-Heidelberg, 1976).CrossRefzbMATHGoogle Scholar
  6. 6.
    M. Kummer, “On the Regularization of the Kepler Problem,” Commun. Math. Phys. 84, 133–152 (1982).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    P. Kustaanheimo and E. Stiefel, “Perturbation Theory of Kepler Motion Based on Spinor Regularization,” J. Reine Angew. Math. 218, 204–219 (1965).MathSciNetzbMATHGoogle Scholar
  8. 8.
    J. Marsden and A. Weinstein, “Reduction of Symplectic Manifolds with Symmetry,” Rep. Math. Phys. 5, 212–130 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Odzijewicz, “Perturbed (2n − 1)-Dimensional Kepler Problem and the Nilpotent Adjoint Orbits of U(n, n),” arXiv:1806.05912.Google Scholar
  10. 10.
    A. Odzijewicz and M. Świȩtochowski, “Coherent States Map for MIC-Kepler System,” J. Math. Phys. 38(10), 5010–5030 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Odzijewicz and E. Wawreniuk, “Classical and Quantum Kummer Shape Algebras,” J. Phys. A Math. Theor. 49(26), 1–33 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. Penrose, “Twistor Algebra,” J. Math. Phys. 8, 345–366 (1967).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J.-M. Souriau, Structure des systemes dynamiques (Dunod, Paris, 1970).zbMATHGoogle Scholar
  14. 14.
    E. L. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics (Springer Verlag, 1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of BiałystokBiałystokPoland

Personalised recommendations