Advertisement

Russian Journal of Mathematical Physics

, Volume 25, Issue 4, pp 509–524 | Cite as

Chaplygin Top with a Periodic Gyrostatic Moment

  • A. A. Kilin
  • E. N. Pivovarova
Article
  • 11 Downloads

Abstract

In the paper, a study of rolling of a dynamically asymmetrical unbalanced ball (Chaplygin top) on a horizontal plane under the action of periodic gyrostatic moment is carried out. The problem is considered in the framework of the model of a rubber body, i.e., under the assumption that there is no slipping and spinning at the point of contact. It is shown that, for certain values of the parameters of the system and certain dependence of the gyrostatic moment on time, an acceleration of the system, i.e., an unbounded growth of the energy of the system, is observed. Investigations of the dependence of the presence of acceleration on the parameters of the system and on the initial conditions are carried out. On the basis of the investigations of the dynamics of the frozen system, a conjecture concerning the general mechanism of acceleration at the expense to periodic impacts in nonholonomic systems is expressed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “On the Hadamard – Hamel Problem and the Dynamics of Wheeled Vehicles,” Regul. Chaotic Dyn. 20 (6), 752–766 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    I. A. Bizyaev, A. V. Borisov, V. V. Kozlov, and I. S. Mamaev, “Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems,” submitted to Nonlinearity.Google Scholar
  3. 3.
    I. A. Bizyaev, A. V. Borisov, and S.P. Kuznetsov, “Chaplygin Sleigh with Periodically Oscillating Internal Mass,” EPL 119 (6), 60008, 7 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration,” Regul. Chaotic Dyn. 22 (8), 955–975 (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    E. Fermi, “On the Origin of the Cosmic Radiation,” Phys. Rev. 75 (8), 1169–1174 (1949).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    S. M. Ulam, “On Some Statistical Properties of Dynamical Systems,” Proc. of the 4th Berkeley Symposium on Mathematical Statistics and Probability 3, 315–320 (1961).ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    F. Lenz, F.K. Diakonos, and P. Schmelcher, “Tunable Fermi Acceleration in the Driven Elliptical Billiard,” Phys. Rev. Lett. 100 (1), 014103, 4 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    T. Pereira and D. Turaev, “Fast Fermi Acceleration and Entropy Growth,” Math. Model. Nat. Phenom. 10 (3), 31–47 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    S. Bolotin and D. Treschev, “Unbounded Growth of Energy in Nonautonomous Hamiltonian Systems,” Nonlinearity 12 (2), 365–388 (1999).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J. Koiller, R. Markarian, S. O. Kamphorst, and S. Pinto de Carvalho, “Static and Time-Dependent Perturbations of the Classical Elliptical Billiard,” J. Statist. Phys. 83 (1–2), 127–143 (1996).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    V. Gelfreich and D. Turaev, “Fermi Acceleration in Non-Autonomous Billiards,” J. Phys. A 41 (21), 212003, 6 (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. Gelfreich, V. Rom-Kedar, and D. Turaev, “Fermi Acceleration and Adiabatic Invariants for Non-Autonomous Billiards,” Chaos 22 (3), 033116, 21 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    K. Shah, V. Gelfreich, V. Rom-Kedar, and D. Turaev, “Leaky Fermi Accelerators,” Phys. Rev. E 91 (6), 062920, 7 (2015).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to Control Chaplygin’s Sphere Using Rotors,” Regul. Chaotic Dyn. 17 (3–4), 258–272 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Y. L. Karavaev and A.A. Kilin, “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform,” Regul. Chaotic Dyn. 20 (2), 134–152 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. A. Kilin, E.N. Pivovarova, and T.B. Ivanova, “Spherical Robot of Combined Type: Dynamics and Control,” Regul. Chaotic Dyn. 20 (6), 716–728 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. V. Borisov, I. S. Mamaev, and I. A. Bizyaev, “The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere,” Regul. Chaotic Dyn. 18 (3), 277–328 (2013).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    H. Cendra and M. Etchechoury, “Rolling of a Symmetric Sphere on a Horizontal Plane without Sliding or Slipping,” Rep. Math. Phys. 57 (3), 367–374 (2006).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    K. M. Ehlers and J. Koiller, “Rubber Rolling: Geometry and Dynamics of 2 - 3 - 5 Distributions,” in Proc. IUTAM Symposium 2006 on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, Russia, 25–30 August 2006), pp. 469–480.Google Scholar
  20. 20.
    J. Koiller and K. M. Ehlers, “Rubber Rolling over a Sphere,” Regul. Chaotic Dyn. 12 (2), 127–152 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A. V. Borisov and I. S. Mamaev, Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos (R&C Dynamics, Institute of Computer Science, Izhevsk, 2005) (Russian).zbMATHGoogle Scholar
  22. 22.
    A. V. Borisov, I. S. Mamaev, and E. V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation,” Regul. Chaotic Dyn. 23 (4), 480–502 (2018).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia
  2. 2.Udmurt State UniversityIzhevskRussia

Personalised recommendations