Advertisement

Russian Journal of Mathematical Physics

, Volume 25, Issue 2, pp 271–276 | Cite as

On the Steklov-Type Biharmonic Problem in Unbounded Domains

  • H. A. MatevossianEmail author
Short Communications

Abstract

We study the unique solvability of the Steklov–type biharmonic problem in unbounded domains under the assumption that a generalized solution of this problem has a bounded Dirichlet integral with weight |x| a . Depending on the value of the parameter a, we prove uniqueness theorems or present exact formulas for the dimension of the solution space of the Steklov–type biharmonic problem in the exterior of a compact set and in a half-space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. I,” Comm. Pure Appl. Math. 12 (4), 623–727 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    F. Brock, “An Isoperimetric Inequality for Eigenvalues of the Stekloff Problem,” Z. Angew. Math. Mech. (ZAMM) 81 (1), 69–71 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Douglis and L. Nirenberg, “Interior Estimates for Elliptic Systems of Partial Differential Equations,” Comm. Pure Appl. Math. 8 (4), 503–538 (1955).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Yu. V. Egorov and V. A. Kondratiev, On Spectral Theory of Elliptic Operators (Basel: Birkhauser, 1996).CrossRefzbMATHGoogle Scholar
  5. 5.
    R. Farwig, “A Note on the Reflection Principle for the Biharmonic Equation and the Stokes System,” Acta Appl. Math. 34 (1–2), 41–51 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    F. Gazzola and G. Sweers, “On Positivity for the Biharmonic Operator under Steklov Boundary Conditions,” Arch. Ration. Mech. Anal. 188 (3), 399–427 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    F. Gazzola, H.-Ch. Grunau, and G. Sweers, Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains (Lecture Notes Math. 1991, Springer, 2010).CrossRefzbMATHGoogle Scholar
  8. 8.
    V. A. Kondratiev and O. A. Oleinik, “On the Behavior at Infinity of Solutions of Elliptic Systems with a Finite Energy Integral,” Arch. Ration. Mech. Anal. 99 (1), 75–99 (1987).MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. A. Kondratiev and O. A. Oleinik, “Boundary Value Problems for the System of Elasticity Theory in Unbounded Domains. Korn’s Inequalities,” Russian Math. Surveys 43 (5), 65–119 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    V. A. Kondratiev and O. A. Oleinik, “Hardy’s and Korn’s Inequality and Their Application,” Rend. Mat. Appl. Ser. VII 10, 641–666 (1990).zbMATHGoogle Scholar
  11. 11.
    A. A. Kon’kov, “On the Dimension of the Solution Space of Elliptic Systems in Unbounded Domains,” Russ. Acad. Sci. Sbornik Math. 80 (2), 411–434 (1995).MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. R. Kuttler and V. G. Sigillito, “Inequalities for Membrane and Stekloff Eigenvalues,” J. Math. Anal. Appl. 23 (1), 148–160 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    O. A. Matevosyan, “On Solutions of Boundary Value Problems for a System in the Theory of Elasticity and for the Biharmonic Equation in a Half-Space,” Differ. Equations 34 (6), 803–808 (1998).MathSciNetzbMATHGoogle Scholar
  14. 14.
    O. A. Matevosyan, “The Exterior Dirichlet Problem for the Biharmonic Equation: Solutions with Bounded Dirichlet Integral,” Math. Notes 70 (3), 363–377 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    H. A. Matevossian, “On Solutions of Mixed Boundary Value Problems for the Elasticity System in Unbounded Domains,” Izvestiya Math. 67 (5), 895–929 (2003).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    O. A. Matevosyan, “On Solutions of a Boundary Value Problem for a Polyharmonic Equation in Unbounded Domains,” Russ J. Math. Phys. 21 (1), 130–132 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    O. A. Matevosyan, “Solution of a Mixed Boundary Value Problem for the Biharmonic Equation with Finite Weighted Dirichlet Integral,” Differ. Equations 51 (4), 487–501 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    O. A. Matevossian, “On Solutions of the Neumann Problem for the Biharmonic Equation in Unbounded Domains,” Math. Notes 98 (6), 990–994 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    O. A. Matevosyan, “On Solutions of the Mixed Dirichlet–Navier Problem for the Polyharmonic Equation in Exterior Domains,” Russ. J. Math. Phys. 23 (1), 135–138 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    O. A. Matevosyan, “On Solutions of One Boundary Value Problem for the Biharmonic Equation,” Differ. Equations 52 (10), 1379–1383 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    H. A. Matevossian, “On the Biharmonic Steklov Problem in Weighted Spaces,” Russ. J. Math. Phys. 24 (1), 134–138 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hovik A. Matevossian, “On Solutions of the Mixed Dirichlet–Steklov Problem for the Biharmonic Equation in Exterior Domains,” p-Adic Numbers, Ultrametric Anal. Appl. 9 (2), 151–157 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    C. B. Morrey, Multiple Integrals in the Calculus Variations (Springer Verlag, 1966).zbMATHGoogle Scholar
  24. 24.
    L. E. Payne, “Some Isoperimetric Inequalities for Harmonic Functions,” SIAM J. Math. Anal. 1 (3), 354–359 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, 3rd ed. (Nauka, Moscow, 1988); Applications of Functional Analysis in Mathematical Physics (AMS Providence, 1991).Google Scholar
  26. 26.
    W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique,” Ann. Sci. école Norm. Sup. (3) 19, 191–259, 455–490 (1902).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control”Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations