Advertisement

Russian Journal of Mathematical Physics

, Volume 24, Issue 3, pp 399–411 | Cite as

Optimal control of the motion of a helical body in a liquid using rotors

  • E. V. Vetchanin
  • I. S. Mamaev
Article
  • 28 Downloads

Abstract

The motion controlled by the rotation of three internal rotors of a body with helical symmetry in an ideal liquid is considered. The problem is to select controls that ensure the displacement of the body with minimum effort. The optimality of particular solutions found earlier is studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint (2004).CrossRefzbMATHGoogle Scholar
  2. 2.
    A. V. Arutyunov, G. G. Magaril-Ilyaev, and V. M. Tikhomirov, Pontryagin Maximum Principle: Proof and Applications, (Moscow: Factorial, 2006) (Russian).Google Scholar
  3. 3.
    A. Andersen, U. Pesavento, and Z. J. Wang, “Unsteady Aerodynamics of Fluttering and Tumbling Plates,” J. Fluid Mech. 541, 65–90 (2005).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. Biggs and W. Holderbaum, “Optimal Kinematic Control of an Autonomous Underwater Vehicle,” IEEE Transactions on Automatic Control 54 (7), 1623–1626 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. V. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors,” Nelin. Dinam. 8 (4), 837–852 (2012) [in Russian].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to Control Chaplygin’s Sphere Using Rotors,” Regular and Chaotic Dynamics 17 (3-4), 258–272 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to Control the Chaplygin Ball Using Rotors. II,” Regular and Chaotic Dynamics 18 (1-2), 144–158 (2013).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. V. Borisov, V. V. Kozlov, and I. S. Mamaev, “Asymptotic Stability and Associated Problems of Dynamics of Falling Rigid Body,” Regular and Chaotic Dynamics 12 (5), 531–565 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. V. Borisov, I. S. Mamaev, and I. A. Bizyaev, “Dynamical Systems with Nonintegrable Constraints: Vaconomic Mechanics, Sub-Riemannian Geometry, and Nonholonomic Mechanics,” Uspekhi Mat. Nauk (to appear).Google Scholar
  10. 10.
    A. V. Borisov, E. V. Vetchanin, and A. A. Kilin, “Controlling the Motion of a Triaxial Ellipsoid in a Liquid Using Rotors,” Mat. Zametki (2017) (to appear).Google Scholar
  11. 11.
    A. V. Borisov, S. P. Kuznetsov, I. S. Mamaev, and V. A. Tenenev, “Describing the Motion of a Body with an Elliptical Cross Section in a Viscous Uncompressible Fluid by Model Equations Reconstructed from Data Processing,” Technical Physics Letters 42 (9), 886–890 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Borisov, I. S. Mamaev, and V. V. Sokolov, “A New Integrable Case on so(4),” Doklady Physics 46 (12), 888–889 (2001).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. V. Borisov and I. S. Mamaev, “On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation,” Chaos 16 (1), 013118, pp. 7 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. A. Chaplygin, “Motion of Heavi Bodies in an Incompressible Fluid”, in S. A. Chaplygin, Complete Works, Vol. I (GITTL, Moscow–Leningrad, 1933), pp. 312–336.Google Scholar
  15. 15.
    F. L. Chernous’ko, “Optimal periodic motions of a two-mass system in a resisting medium,” Prikl. Mat. Mekh. 72 (2), 202–215 (2008) [J. Appl. Math. Mech. 72 (2), 116–125 (2008)].MathSciNetzbMATHGoogle Scholar
  16. 16.
    S. Childress, S. E. Spagnolie, and T. Tokieda, “A bug on a raft: recoil locomotion in a viscous liquid,” J. Fluid Mech. 669, 527–556 (2011).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yu. G. Evtushenko, Methods for Solving Extremal Problems and Their Application in Systems of Optimization (Nauka, Moscow, 1982).zbMATHGoogle Scholar
  18. 18.
    E. Jahnke, F. Emde, and F. Lösch, Special Functions. Formulas, Graphs, Tables (1977).zbMATHGoogle Scholar
  19. 19.
    E. Kanso and J. E. Marsden, “Optimal Motion of an Articulated Body in a Perfect Fluid,” Proc. CDC 44, 2511–2516 (2005).Google Scholar
  20. 20.
    A. A. Kilin and E. V. Vetchanin, “The Contol of the Motion Through an Ideal Fluid of a Rigid Body by Means of Two Moving Masses,” Russian Journal of Nonlinear Dynamics 11 (4), 633–645 (2015).zbMATHGoogle Scholar
  21. 21.
    G. Kirchhoff and K. Hensel, Vorlesungen über mathematische Physik. Mechanik (Leipzig: BG Teubner, 1874).Google Scholar
  22. 22.
    A. I. Klenov and A. A. Kilin, “Influence of Vortex Structures on the Controlled Motion of an Above-Water Screwless Robot,” Regular and Chaotic Dynamics 21 (7-8), 927–938 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    V. V. Kozlov and D. A. Onishchenko, “Motion of a body with undeformable shell and variable mass geometry in an unbounded perfect liquid” J. Dyn. Differ. Equations 15 (2–3), 553–570 (2003)..ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    V. V. Kozlov and D. A. Onishchenko, “Nonintegrability of Kirchhoff’s Equations,” Dokl. Akad. Nauk SSSR 266 (6), 1298–1300 (1982) [in Russian].MathSciNetzbMATHGoogle Scholar
  25. 25.
    V. V. Kozlov and S. M. Ramodanov, “Motion of a Variable Body in an Ideal Fluid,” Prikl. Mat. Mekh. 65 (4), 592–601 (2001) [J. Appl. Math. Mech. 65 (4), 579–587 (2001)].MathSciNetzbMATHGoogle Scholar
  26. 26.
    V. V. Kozlov and S. M. Ramodanov, “On the Motion, in an Ideal Fluid, of a Body with a Rigid Shell and a Changing Mass Geometry,” Dokl. Ross. Akad. Nauk 382 (4), 478–481 (2002) [in Russian].Google Scholar
  27. 27.
    S. P. Kuznetsov, “Motion of a Falling Plate in a Liquid: Finite-Dimensional Models and Phenomena of Complicated Nonlinear Dynamics,” Nelin. Dinam. 11 (1), 3–49 (2015) [in Russian].MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    J. C. Maxwell, “On a Particular Case of the Descent of a Heavy Body in a Resisting Medium,” Camb. Dublin Math. J 9, 145–148 (1854).Google Scholar
  29. 29.
    S. M. Ramodanov and V. A. Tenenev, “Motion of a Body with Variable Mass Geometry in an Unbounded Viscous Liquid,” Nelin. Dinam. 7 (3), 635–647 (2011) [in Russian].CrossRefGoogle Scholar
  30. 30.
    V. V. Sokolov, “A new integrable case for the Kirchhoff equations.,” Teoret. Mat. Fiz. 129 (1), 31–37 (2001) [Theoret. and Math. Phys. 129 (1), 1335–1340 (2001)].MathSciNetCrossRefGoogle Scholar
  31. 31.
    V. A. Steklov, “On the Motion of a Heavy Body in a Liquid,” Paper 1., Soobshch. Khar’k. Mat. O-va (2) 2 (5-6), 209–235 (1891) [in Russian].Google Scholar
  32. 32.
    J. Stoer and R. Bulirsch, Introduction to numerical analysis., Vol. 12. (Springer Science & Business Media, 2013).zbMATHGoogle Scholar
  33. 33.
    M. Svinin, A. Morinaga, and M. Yamamoto, “An Analysis of the Motion Planning Problem for a Spherical Rolling Robot Driven by Internal Rotors,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6 (2012).Google Scholar
  34. 34.
    P. Tallapragada, and S. D. Kelly, “Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal liquids,” The European Physical Journal Special Topics 224 (17), 3185–3197 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    V. A. Tenenev, E. V. Vetchanin, and L. F. Ilaletdinov, “Chaotic Dynamics in the Problem of the Fall of a Screw-Shaped Body in a Fluid,” Russian Journal of Nonlinear Dynamics 12 (1), 99–120 (2016).zbMATHGoogle Scholar
  36. 36.
    E. V. Vetchanin and A. A. Kilin, “Control of Body Motion in an Ideal Fluid Using the Internal Mass and the Rotor in the Presence of Circulation Around the Body,” Journal of Dynamical and Control Systems 23, pp. 435–458 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    E. V. Vetchanin and A. A. Kilin, “Controlled Motion of a Rigid Body with Internal Mechanisms in an Ideal Incompressible Fluid,” Proceedings of the Steklov Institute of Mathematics 295, 302–332 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    E. V. Vetchanin and A. A. Kilin, “Free and Controlled Motion of a Body with Moving Internal Mass Though a Fluid in the Presence of Circulation Around the Body,” Doklady Physics 466 (3), 293–297 (2016).Google Scholar
  39. 39.
    E. V. Vetchanin, A. A. Kilin, and I. S. Mamaev, “Control of the Motion of a Helical Body in a Fluid Using Rotors,” Regular and Chaotic Dynamics 21 (7-8), 874–884 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    E. V. Vetchanin, I. S. Mamaev, and V. A. Tenenev, “The Self-Propulsion of a Body with Moving Internal Masses in a Viscous Fluid,” Regular and Chaotic Dynamics 18 (1-2), 100–117 (2013).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    C. A. Woolsey and N. E. Leonard, “Stabilizing Underwater Vehicle Motion Using Internal Rotors,” Automatica J. IFAC 38 (12), 2053–2062 (2002).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations