Advertisement

Russian Journal of Mathematical Physics

, Volume 24, Issue 2, pp 241–248 | Cite as

Degenerate Laplace transform and degenerate gamma function

  • T. KimEmail author
  • D. S. Kim
Article

Abstract

In this paper, we introduce the degenerate Laplace transform and degenerate gamma function and investigate some of their properties. From our investigation, we derive some interesting formulas related to the degenerate Laplace transform and degenerate gamma function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-M. An, “On a Generalization of the Gamma Function and Its Application to Certain Dirichlet Series,” Bull. Amer. Math. Soc. 75, 562–568 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    T. D. Banerjee, “A Note on Incomplete Gamma Function,” Bull. Calcutta Math. Soc. 65 (2), 68–70 (1973).MathSciNetzbMATHGoogle Scholar
  3. 3.
    L. Carlitz, “Degenerate Stirling, Bernoulli and Eulerian numbers,” Utilitas Math. 15, 51–88 (1979).MathSciNetzbMATHGoogle Scholar
  4. 4.
    L. Carlitz, “A Degenerate Staudt–Clausen Theorem,” Util. Math. Arch. Math. (Basel) 7, 28–33 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    W. S. Chung, T. Kim, and H. I. Kwon, “On the q-Analog of the Laplace Transform,” Russ. J. Math. Phys. 21 (2), 156–168 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D. V. Dolgy, T. Kim, and J. J. Seo, “On the Symmetric Identities of Modified Degenerate Bernoulli Polynomials,” Proc. Jangjeon Math. Soc. 19 (2), 301–308 (2016).MathSciNetzbMATHGoogle Scholar
  7. 7.
    T. Donaldson, A Laplace Transform Calculus for Partial Differential Operators (Memoirs of the American Mathematical Society, No. 143. Amer. Math. Soc., Providence, R.I., 1974).zbMATHGoogle Scholar
  8. 8.
    Y. He and S. J. Wang, “New Formulae of Products of the Frobenius–Euler Polynomials,” J. Inequal. Appl. 261, p. 12 (2014).MathSciNetGoogle Scholar
  9. 9.
    D. V. Dolgy, D. S. Kim, and T. Kim, “On the Korobov Polynomials of the First Kind,” (Russian) Mat. Sb. 208 (1), 65–79 (2017).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. W. Kemp, “On Gamma Function Inequalities,” Skand. Aktuarietidskr., 65–69 (1973).Google Scholar
  11. 11.
    D. S. Kim, T. Kim, and D. V. Dolgy, “On Carlitz’s Degenerate Euler Numbers and Polynomials,” J. Comput. Anal. Appl. 21 (4), 738–742 (2016).MathSciNetzbMATHGoogle Scholar
  12. 12.
    T. Kim and D. S. Kim, “On λ-Bell Polynomials Associated with Umbral Calculus,” Russ. J. Math. Phys. 24 (1), 69–78 (2017).MathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Kim, “On Degenerate q-Bernoulli Polynomials,” Bull. Korean Math. Soc. 53 (4), 1149–1156 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    T. Kim, “Degenerate Euler Zeta Function,” Russ. J. Math. Phys. 22 (4), 469–472 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    T. Kim, D. V. Dolgy, L. C. Jang and H.-I. Kwon, “Some Identities of Degenerate q-Euler Polynomials under the Symmetry Group of Degree n,” J. Nonlinear Sci. Appl. 9 (6), 4707–4712 (2016).MathSciNetzbMATHGoogle Scholar
  16. 16.
    T. Kim, D. S. Kim, H. I. Kwon, and J. J. Seo, “Some Identities for Degenerate Frobenius–Euler Numbers Arising from Nonlinear Differential Equations,” Ital. J. Pure Appl. Math. 36, 843–850(2016).Google Scholar
  17. 17.
    T. Kim, D. S. Kim, and J. J. Seo, “Fully Degenerate Poly–Bernoulli Numbers and Polynomials,” Open Math. 14, 545–556 (2016).MathSciNetzbMATHGoogle Scholar
  18. 18.
    T. Konstantopoulos, Z. Liu, and X. Yang, “Laplace Transform Asymptotics and Large Deviation Principles for Longest Success Runs in Bernoulli Trials,” J. Appl. Probab. 53 (3), 747–764 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    R. Nath, “On a Generalization of Laplace Transform,” Acta Mexicana Ci. Tecn. 8 (1–3), 61–64 (1974).MathSciNetzbMATHGoogle Scholar
  20. 20.
    F. Oberhettinger and L. Badii, Tables of Laplace Transforms (Springer-Verlag, New York-Heidelberg, 1973).CrossRefzbMATHGoogle Scholar
  21. 21.
    K. A. Penson and K. Gorska, “On the Properties of Laplace Transform Originating from One-Sided L+vy Stable Laws,” J. Phys. A 49 (6), 065201, 10 pp. (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    M. R. Rodrigo and A. L. Worthy, “Solution of Multilayer Diffusion Problems via the Laplace Transform,” J. Math. Anal. Appl. 444 (1), 475–502 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. G. Shannon, “Fermatian Hurwitz Series within the Fontene–Jackson Calculus,” W. Stud. Contemp. Math. (Kyungshang) 24 (1), 129–136 (2014).MathSciNetzbMATHGoogle Scholar
  24. 24.
    T. Sudo, “Computing the Laplace Transform and the Convolution for More Functions Adjoined,” Cubo 17 (3), 71–90 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    R. U. Verma, “Application of Gamma Functions in Solving Certain Integral Equations,” Acta Mexicana Ci. Tecn. 8 (1–3), 56–60 (1974).MathSciNetzbMATHGoogle Scholar
  26. 26.
    V. B. Zarinov, “The Laplace Transform of Generalized Functions,” (Russian) Studies in differential equations and their applications, Trudy Moskov. Orden. Lenin. Energet. Inst. Vyp. 201, 46–55 (1974).MathSciNetGoogle Scholar
  27. 27.
    D. G. Zill and M. R. Cullen, Advanced Engineering Mathematics (Jones and Bartlett Publishers, 2006).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Mathematics, College of ScienceTianjin Polytechnic UniversityTianjinChina
  2. 2.Department of MathematicsKwangwoon UniversitySeoulRepublic of Korea
  3. 3.Department of MathematicsSogang UniversitySeoulRepublic of Korea

Personalised recommendations