Advertisement

Russian Journal of Mathematical Physics

, Volume 24, Issue 1, pp 69–78 | Cite as

On λ-Bell polynomials associated with umbral calculus

  • T. KimEmail author
  • D. S. Kim
Article

Abstract

In this paper, we introduce some new λ-Bell polynomials and Bell polynomials of the second kind and investigate properties of these polynomials. Using our investigation, we derive some new identities for the two kinds of λ-Bell polynomials arising from umbral calculus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964).zbMATHGoogle Scholar
  2. 2.
    S. Araci, X. Kong, M. Acikgoz, and E. Sen, “A New Approach to Multivariate q-Euler Polynomials Using the Umbral Calculus,” J. Integer Seq. 17 (1), (2014).Google Scholar
  3. 3.
    E. T. Bell, “Exponential Polynomials,” Ann. of Math. 35 (2), 258–277 (1934).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    L. Carlitz, “Degenerate Stirling, Bernoulli and Eulerian numbers,” Util. Math. 15, 51–88 (1979).MathSciNetzbMATHGoogle Scholar
  5. 5.
    L. Comtet, Advanced Combinatorics (enlarged ed., D. Reidel Publishing Co., Dordrecht, 1974, The art of finite and infinite expansions).CrossRefzbMATHGoogle Scholar
  6. 6.
    R. B. Corcino, M. B. Montero, and C. B. Corcino, “On Generalized Bell Numbers for Complex Argument,” Util. Math. 88, 267–279 (2012).MathSciNetzbMATHGoogle Scholar
  7. 7.
    D. S. Kim and T. Kim, “Some Identities of Bell Polynomials,” Sci. China Ser. A Math. 58, (2015).Google Scholar
  8. 8.
    D. S. Kim and T. Kim, “Some Identities of Degenerate Special Polynomials,” Open Math. 13, (2015).Google Scholar
  9. 9.
    T. Kim, “Identities Involving Laguerre Polynomials Derived from Umbral Calculus,” Russ. J. Math. Phys. 21 (1), 36–45 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    T. Kim, “Barnes’ Type Multiple Degenerate Bernoulli and Euler Polynomials,” Appl. Math. Comput. 258, 556–564 (2015).MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Mihoubi, “The Role of Binomial Type Sequences in Determination Identities for Bell Polynomials,” Ars Combin. 111, 323–337 (2013).MathSciNetzbMATHGoogle Scholar
  12. 12.
    D. S. Kim and T. Kim, “On degenerate Bell numbers and polynomials,” Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 1–12 (2016), doi:10.1007/s13398-016-0304-4.Google Scholar
  13. 13.
    S. Roman, The Umbral Calculus (Pure Appl. Math., vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984).zbMATHGoogle Scholar
  14. 14.
    W. Wang and T. Wang, “Identities on Bell Polynomials and Sheffer Sequences,” Discrete Math. 309 (6), 1637–1648 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Z. Zhang and J. Yang, “Notes on Some Identities Related to the Partial Bell Polynomials,” Tamsui Oxf. J. Inf. Math. Sci. 28 (1), 39–48 (2012).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of MathematicsTianjin Polytechnic UniversityTianjinChina
  2. 2.Department of MathematicsKwangwoon UniversitySeoulRepublic of Korea
  3. 3.Department of MathematicsSogang UniversitySeoulRepublic of Korea

Personalised recommendations