Russian Journal of Mathematical Physics

, Volume 23, Issue 4, pp 431–454 | Cite as

Rigid body dynamics in non-Euclidean spaces

  • A. V. BorisovEmail author
  • I. S. Mamaev


In this paper, we focus on the study of two-dimensional plate dynamics on the Lobachevskii plane L 2. First of all, we consider the free motion of such a plate, which is a pseudospherical analog of dynamics of the Euler top, and also present an analog of the Euler–Poisson equations enabling us to study the motion of the body in potential force fields having rotational symmetry. We present a series of integrable cases, having analogs in Euclidean space, for different fields. Moreover, in the paper, a partial qualitative analysis of the dynamics of free motion of a plate under arbitrary initial conditions is made and a number of computer illustrations are presented which show a substantial difference of the motion from the case of Euclidean space. The study undertaken in the present paper leads to interesting physical consequences, which enable us to detect the influence of curvature on the body dynamics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. S. Ball, “Certain Problems in the Dynamics of a Rigid System Moving in Elliptic Space,” Trans. Roy. Irish Academy 28, 159–184 (1881).Google Scholar
  2. 2.
    A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems: Geometry, Topology, Classification (CRC Press, 2004).zbMATHGoogle Scholar
  3. 3.
    A. V. Borisov, I. S. Mamaev, and I. A. Bizyaev, “The Spatial Problem of Two Bodies on a Sphere. Reduction and Stochasticity,” Regul. Chaotic Dyn. 21 (5), 556–580 (2016).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. V. Borisov and I. S. Mamaev, “Generalized Problem of Two and Four Newtonian Centers,” Celestial Mech. Dynam. Astronom. 92 (4), 371–380 (2005).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. V. Borisov and I. S. Mamaev, “The Restricted Two-Body Problem in Constant Curvature Spaces,” Celestial Mech. Dynam. Astronom. 96 (1), 1–17 (2006).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. V. Borisov, I. S. Mamaev, and A. A. Kilin, “Two-Body Problem on a Sphere: Reduction, Stochasticity, Periodic Orbits,” Regul. Chaotic Dyn. 9 (3), 265–279 (2004).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. Bottema and H. J. E. Beth, “The Stationary Motions of Rigid Body under no Forces in Four-Dimensional Space,” Koninklijke Nederlands Akademie va Wetenschappen. Proc. 54 (2), 123–129 (1951).MathSciNetzbMATHGoogle Scholar
  8. 8.
    N. Bottema and H. J. E. Beth, “Euler’s Equations for the Motion of Rigid Body in n-Dimensional Space,” Koninklijke Nederlandse Akademie va Wetenschappen. Proc. 54 (1), 106–108 (1951).MathSciNetzbMATHGoogle Scholar
  9. 9.
    A. A. Burov, I. Motte, and S. Y. Stepanov, “On Motion of Rigid Bodies on a Spherical Surface,” Regul. Chaotic Dyn. 4 (3), 61–66 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    W. Blaschke, “Nicht-Euklidische Geometrie und Mechanik I, II, III,” Hamburger Mathematische Einrelsllriften 34, p. 39 (1942).MathSciNetzbMATHGoogle Scholar
  11. 11.
    W.K. Clifford, “On the Free Motion under no Forces of a Rigid System in an n-Fold Homaloid,” Proc. Lond. Math. Soc. 7 (93), 67–70 (1876).MathSciNetzbMATHGoogle Scholar
  12. 12.
    W. K. Clifford, “Motion of a Solid in Elliptic Space,” Math. Papers, 78–384 (1882).Google Scholar
  13. 13.
    T. De Donder, “Mouvement d’un solide dans un espace Riemannien 1 and 2,” Bull. Acad. Roy. Belg. 28, 8–16 (1942).MathSciNetzbMATHGoogle Scholar
  14. 14.
    D. Francesco, “De Sul moto di un corpo rigido in uno spazio di curvatura costante,” Math. Ann. 55 (4), 573–584 (1902).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    W. Frahm, “Ueber gewisse Differentialgleichungen,” Math. Ann. 8 (1), 35–44 (1874).CrossRefGoogle Scholar
  16. 16.
    G. Kobb, “Sur le probleme de la rotation dún corps autour dún point fixe,” Bull. Soc. Math. France XXIII, 210–215 (1895).Google Scholar
  17. 17.
    W. Killing, “Die Mechanik in den Nicht-Euklidischen Raumformen,” J. Reine Angew. Math. 98, 1–48 (1885).MathSciNetzbMATHGoogle Scholar
  18. 18.
    F. Kötter, “Üdie Bewegung eines festen Körpers in einer Flussigkeit. I.II,” J. Reine Angew. Math. 109, 51–81, 89–111 (1892).MathSciNetzbMATHGoogle Scholar
  19. 19.
    P. Birtea, I. Casu, T. S. Ratiu, and M. Turhan, “Stability of Equilibria for the so(4). Free Rigid Body,” J. Nonlinear Sci. 22 (2), 187–212 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    G. Hamel, “Die Lagrange-Eulerschen Gleichungen der Mechanik,” 50, 1–57 (1904).Google Scholar
  21. 21.
    R. S. Heath, “On the Dynamics of a Rigid Body in Elliptic Space,” Philos. Trans. R. Soc. Lond. 175, 281–324 (1884).CrossRefzbMATHGoogle Scholar
  22. 22.
    E. Hölder, “Die Dynamik des starren Körpers in einem nichteuklidischen Raum,” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Springer Berlin Heidelberg 20 (3–4), 242–252 (1956).CrossRefzbMATHGoogle Scholar
  23. 23.
    A. Izosimov, “Stability in Bihamiltonian Systems and Multidimensional Rigid Body,” J. Geom. Phys. 62, 2414–2423 (2012).ADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    A. A. Oshemkov, “Topology of Isoenergy Surfaces and Bifurcation Diagrams for Integrable Cases of Rigid Body Dynamics on so(4),” Uspekhi Mat. Nauk. 42 (1), 199–200 (1987).MathSciNetzbMATHGoogle Scholar
  25. 25.
    F. Magri and T. Skrypnyk, “The Clebsch System,” arXiv preprint arXiv:1512.04872 (2015).Google Scholar
  26. 26.
    P. T. Nagy, “Dynamical Invariants of Rigid Motions on the Hyperbolic Plane,” Geom. Dedicata 37, 125–139 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    T. I. Pogosian and M. P. Kharlamov, “Bifurcation Set and Integral Manifolds of the Problem Concerning the Motion of a Rigid Body in a Linear Force Field,” J. Appl. Math. Mech. 43 (3), 452–462 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Salvai, “On the Dynamics of a Rigid Body in the Hyperbolic Space,” J. Geom. Phys. 36 (1), 126–139 (2000).ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    F. Schottky, “Über das analytische Problem der Rotation eines starren Korpers in Raume von vier Dimensionen,” Sitzungsber. Konig. Preuss. Akad. Wiss. Berlin, 227–232 (1891).Google Scholar
  30. 30.
    F. Schottky, “Über die analytische Aufgabe der Bewegung eines starren Korpers im vierdimensionalen Raume,” Berlin: Sitzungsberichte Akad, 215–241 (1926).zbMATHGoogle Scholar
  31. 31.
    H. Weyl, “Space–Time–Matter,” Dutton, 517 (1922).Google Scholar
  32. 32.
    J. Zitterbarth, “Some Remarks on the Motion of a Rigid Body in a Space of Constant Curvature without External Forces,” Demonstratio Math. 24 (3–4), 465–494 (1991).MathSciNetzbMATHGoogle Scholar
  33. 33.
    V. I. Arnol’d, “The Hamiltonian Nature of the Euler Equations in the Dynamics of a Rigid Body and of an Ideal Fluid,” Uspekhi Mat. Nauk 24 (3), 225–226 (1969) [in Russian].MathSciNetGoogle Scholar
  34. 34.
    A. I. Bobenko, “Euler Equations on the Algebras e(3) and so(4). Isomorphism of the Integrable Cases,” Funktsional. Anal. Prilozhen. 20 (1), 64–66 (1986) [Functional Anal. Appl. 20 (1), 53–56 (1986)].MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    O. I. Bogoyavlenskii, Overturning Solitons. Nonlinear Integrable Equations (Nauka, Moscow, 1991) [in Russian].zbMATHGoogle Scholar
  36. 36.
    A. V. Bolsinov, “Compatible Poisson Brackets on Lie Algebras and the Completeness of Families of Functions in Involution,” Izv. Akad. Nauk SSSR Ser. Mat. 55, (1), 68–92 (1991) [Math. USSR-Izv. 38 (1), 69–90 (1992)].MathSciNetzbMATHGoogle Scholar
  37. 37.
    A. V. Bolsinov, A. V. Borisov, and I. S. Mamaev, “Topology and Stability of Integrable Systems,” Usp. Mat. Nauk 65 (2), 71–132 (2010) [Russ. Math. Surv. 65 (2), 259–317 (2010)].MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    A. V. Borisov and I. S. Mamaev, Dynamics of a Rigid Body. Hamiltonian Methods, Integrability, Chaos, 2nd ed. (Moscow–Izhevsk: Institut Komp’yuternykh Issledovanii, 2005).zbMATHGoogle Scholar
  39. 39.
    A. V. Borisov and I. S. Mamaev, Modern Methods in the Theory of Integrable Systems. Bi-Hamiltonian Description, Lax Representation, and Separation of Variables (Institut Komp’yuternykh Issledovanii, Moscow–Izhevsk, 2003).zbMATHGoogle Scholar
  40. 40.
    A. V. Borisov and I. S. Mamaev, Poisson Structures and Lie Algebras in Hamiltonian Mechanics (Izd. Dom “Udmurtskij Univ.”, Nauchno-Izdatel’skij Tsentr “Regulyarnaya i Khaoticheskaya Dinamika,” Izhevsk, 1999).zbMATHGoogle Scholar
  41. 41.
    A. A. Burov, “Motion of a Body with a Plane of Symmetry on a Three-Dimensional Sphere under the Action of a Spherical Analog of Newtonian Attraction,” Prikl. Mat. Mekh. 72 (1), 23–34 (2008) [J. Appl. Math. Mech. 72 (1), 15–21 (2008)].MathSciNetzbMATHGoogle Scholar
  42. 42.
    N. E. Zhukovsky, “On the Motion of a Material Pseudospherical Figure on the Surface of a Pseudosphere,” Pol. Sobr. Soch., Vol. 1, 490–535 (1937) [the original in Trudy Otdel. Fiz. Nauk Obshch. Lyubit. Estestvozn., Antropol. Etnogr. XI (2), (1902)] [in Russian].Google Scholar
  43. 43.
    S. V. Manakov, “Note on the Integration of Euler’s Equations of the Dynamics of an n-Dimensional Rigid Body,” Funktsional. Anal. Prilozhen. 10 (4), 93–94 (1976) [Funct. Anal. Appl. 10 (4), 328–329 (1976), (1977)].MathSciNetzbMATHGoogle Scholar
  44. 44.
    E. I. Kharlamova, “On the Motion of a Rigid Body about a Fixed Point in a Central Newtonian Force Field,” Izv. Sibirsk. Otd. Akad. Nauk SSSR (6), 7–17 (1959) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations