Russian Journal of Mathematical Physics

, Volume 19, Issue 4, pp 449–460 | Cite as

On the critical behavior in nonlinear evolutionary PDEs with small viscosity

  • B. Dubrovin
  • M. Elaeva


The problem of general dissipative regularization of the quasilinear transport equation is studied. We argue that the local behavior of solutions to the regularized equation near the point of gradient catastrophe for the transport equation is described by the logarithmic derivative of the Pearcey function; this statement generalizes a result of Il’in [12]. We provide some analytic arguments supporting the conjecture and test it numerically.


Mathematical Physic Cauchy Problem Shock Front Asymptotic Formula Burger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    É. Brézin, E. Marinari, and G. Parisi, “A Nonperturbative Ambiguity Free Solution of a String Model,” Phys. Lett. B 242(1), 35–38 (1990).ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    T. Claeys and T. Grava, “Universality of the Break-Up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach,” Comm. Math. Phys. 286(3), 979–1009 (2009).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    B. Dubrovin, “On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour,” Comm. Math. Phys. 267(1), 117–139 (2006).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    B. Dubrovin, T. Grava, and C. Klein, “Numerical Study of Break-Up in Generalized Korteweg-de Vries and Kawahara Equations,” SIAM J. Appl. Math. 71(4), 983–1008 (2011).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. Dubrovin and Y. Zhang, Normal Forms of Hierarchies of Integrable PDEs, Frobenius Manifolds and Gromov-Witten Invariants, arXiv: math/0108160.Google Scholar
  6. 6.
    C. A. J. Fletcher, Computational Galerkin Methods (Springer-Verlag, New York-Berlin, 1984).zbMATHCrossRefGoogle Scholar
  7. 7.
    C. A. J. Fletcher, Computational Techniques for Fluid Dynamics. Vol. 2. Specific Techniques for Different Flow Categories, 2nd ed. (Springer-Verlag, Berlin, 1991; “Mir,” Moscow, 1991).Google Scholar
  8. 8.
    A. R. Mitchell and R. Wait, The Finite Element Method in Partial Differential Equations (Wiley-Interscience [John Wiley&Sons], London-New York-Sydney, 1977).zbMATHGoogle Scholar
  9. 9.
    G. Moore, “Geometry of the String Equations,” Comm. Math. Phys. 133(2), 261–304 (1990).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    W. G. Strang and G. J. Fix, An Analysis of the Finite Element Method (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973; Izdat. “Mir,” Moscow, 1977).zbMATHGoogle Scholar
  11. 11.
    F. Hecht, FreeFem++. Third ed., Version 3.19-1.
  12. 12.
    A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (“Nauka”, Moscow, 1989; American Mathematical Society, Providence, RI, 1992).zbMATHGoogle Scholar
  13. 13.
    Liu Si-Qi, and Y. Zhang, “On Quasi-Triviality and Integrability of a Class of Scalar Evolutionary PDEs,” J. Geom. Phys. 57(1), 101–119 (2006).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    B. Suleimanov, “Onset of Nondissipative Shock Waves and the “Nonperturbative” Quantum Theory of Gravitation,” Zh. `Eksper. Teoret. Fiz. 105(5), 1089–1097 (1994) [J. Exp. Theor. Phys. 78 (5), 583–587 (1994)].MathSciNetGoogle Scholar
  15. 15.
    G. B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience [John Wiley&Sons], New York-London-Sydney, 1974; “Mir,” Moscow, 1977).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • B. Dubrovin
    • 1
    • 2
  • M. Elaeva
    • 2
  1. 1.SISSATriesteItaly
  2. 2.Laboratory of Geometric Methods in Mathematical PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations