Graphene as a quantum surface with curvature-strain preserving dynamics



We discuss how the curvature and the strain density of an atomic lattice generate the quantization of graphene sheets as well as the dynamics of geometric quasiparticles propagating along the constant curvature/strain levels. The internal kinetic momentum of a Riemannian oriented surface (a vector field preserving the Gaussian curvature and the area) is determined.


Fullerene Riemannian Surface Graphene Sheet Gaussian Curvature Jacobi Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The Structure of Suspended Graphene Sheets,” Nature 446, 60–63 (2007); arXiv: cond-mat/0701379.CrossRefADSGoogle Scholar
  2. 2.
    P. E. Lammert and V. H. Crespi, “Geometrical Perturbation of Graphene Electronic Structure,” Phys. Rev. B 61, 7308–7311 (2000).CrossRefADSGoogle Scholar
  3. 3.
    D. R. Nelson, T. Piran, and S. Weinberg (eds.), Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore, 2004).MATHGoogle Scholar
  4. 4.
    S. Morozov, K. Novoselov, F. Scheldin, L. A. Ponomarenko, D. Jiang, and A. Geim, “Strong Suppression of Weak Localization in Graphene,” Phys. Rev. Lett. 97, 016801 (2006).CrossRefADSGoogle Scholar
  5. 5.
    A. F. Morpurgo and F. Guinea, “Intervalley Scattering, Long-Range Disorder, and Effective Time-Reversal Symmetry Breaking in Graphene,” Phys. Rev. Lett. 97, 196804 (2006).CrossRefADSGoogle Scholar
  6. 6.
    J. Gonzales, F. Guinea, and M. A. H. Vozmediano, “The Electronic Spectrum of Fullerenes from the Dirac Equation,” Nucl. Phys. B 406(3), 771–794 (1993); arXiv: cond-mat/9208004.CrossRefADSGoogle Scholar
  7. 7.
    E.-A. Kim and A. H. Castro Neto, “Graphene as an Electronic Membrane,” Europhys. Lett. 84(5), p. 57007 (2008); arXiv: cond-mat/0702562v2.CrossRefADSGoogle Scholar
  8. 8.
    H. Suzuura and T. Ando, “Phonons and Electron-Phonon Scattering in Carbon Nanotubes,” Phys. Rev. B 65, 235412 (2002); J. L. Manes,“Symmetry-Based Approach to Electron-Phonon Interaction in Graphene,” Phys. Rev. B 76, 045430 (2007).CrossRefADSGoogle Scholar
  9. 9.
    K. Sasaki, Y. Kawazoe, and R. Saito, “Local Energy Gap in Deformed Carbon Nanotubes,” Progr. Theoret. Phys. 113, 463–480 (2005).CrossRefADSGoogle Scholar
  10. 10.
    A. Cortijo and M. A. H. Vozmediano, “Electronic Properties of Curved Graphene Sheets,” Europhys. Lett. 77, 47002 (2007); M. A. H. Vozmediano, F. de Juan, and A. Cortijo, “Gauge Fields and Curvature in Graphene,” J. Phys. Conf. Ser. 129, 012001 (8pp.) (2008); arXiv: cond-mat/0807.3909v1.CrossRefADSGoogle Scholar
  11. 11.
    F. Guinea, M. I. Katsnelson, and M. A. H. Vozmediano, “Midgap States and Charge Inhomogeneities in Corrugated Graphene,” Phys. Rev. B 77, 075422 (2008); F. Guinea, A. K. Geim, M. I. Katsnelson, and K. S. Novoselov, “Generating Quantizing Pseudomagnetic Fields by Bending Graphene Ribbons,” Phys. Rev. B 81, 035408 (2010), arXiv: cond-mat/0910.5935v1; M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, “Gauge Fields in Graphene,” arXiv: cond-mat/1003.5179v2.CrossRefADSGoogle Scholar
  12. 12.
    N.-C. Yeh, M.-L. Teague, S. Yeom, B. L. Standley, R. T.-P. Wu, D. A. Boyd, and M. W. Bockrath, “Strain-Induced Pseudo-Magnetic Fields and Charging Effects on CVD-Grown graphene;” arXiv:condmat, 1009.0081v1.Google Scholar
  13. 13.
    M. V. Karasev, “Magneto-Metric Hamiltonians on Quantum Surfaces in the Configuration Space,” Russ. J. Math. Phys. 14(1), 57–65 (2007).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    M. V. Karasev, “Integral Geometric Current, and the Maxwell Equations as a Hamiltonian System on Configuration Surfaces,” Russ. J. Math. Phys. 14(2), 134–141 (2007).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    M. V. Karasev, “Geometric Dynamics on Quantum Nano-Surfaces and Low-Energy Spectrum in a Homogeneous Magnetic Field,” Russ. J. Math. Phys. 14(4), 440–447 (2007).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    M. V. Karasev, “Quantum Geometry of Nano-Space,” Russ. J. Math. Phys. 15(3), 417–420 (2008); “Magneto-Metric Current Competing with Hall Current on Curved Nanosurfaces,”In Proc. of Intern. Forum on Nanotechnologies, Moscow, 2008, Vol. 1. p. 31 (in Russian).MathSciNetGoogle Scholar
  17. 17.
    R. Peierls, “Zur Theorie des Diamagnetismus von Leitungselektronen,” Z. Phys. 80, 763–791 (1933).CrossRefMATHADSGoogle Scholar
  18. 18.
    R. Jackiw, “Physical Instances of Noncommutative Coordinates,” Lecture Notes in Phys. 616, 294–304 (2003); arXiv: hep-th/0110057.CrossRefADSGoogle Scholar
  19. 19.
    G. Dunne and R. Jackiw, “Peierls substitution and Chern-Simons quantum mechanics,” Nuclear Phys. B. Proc. Suppl. 33C, 114–118 (1993).CrossRefMATHADSMathSciNetGoogle Scholar
  20. 20.
    P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev. 71(9), 622–634 (1947).CrossRefMATHADSGoogle Scholar
  21. 21.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature 438, 197–200 (2005).CrossRefADSGoogle Scholar
  22. 22.
    M. S. Foster and I. L. Aleiner, “Graphene via Large N: A Renormalization Group Study,” Phys. Rev. B 77, 195413 (2008).CrossRefADSGoogle Scholar
  23. 23.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The Electronic Properties of Graphene,” Rev.Modern Phys. 81, 109–162 (2009); arXiv: cond-mat/0709.1163v2.CrossRefADSGoogle Scholar
  24. 24.
    F. de Juan, A. Cortijo, and M. A. H. Vozmediano, “Dislocations and Torsion in Graphene and Related Systems,” Nuclear Phys. B 828(3), 625–637 (2010); arXiv: cond-mat/0909.4068v1.CrossRefMATHADSMathSciNetGoogle Scholar
  25. 25.
    T. Low and F. Guinea, “Strain-Induced Pseudomagnetic Field for Novel Graphene Electronics,” Nano Lett. 10(9), 3551–3554 (2010).CrossRefADSGoogle Scholar
  26. 26.
    S. Azevedo, C. Furtado, and F. Moraes, “Charge Localization Around Disclintions in Monolayer Graphene,” Phys. Status Solidi (b) 207(2), 387–391 (1998).CrossRefADSGoogle Scholar
  27. 27.
    A. L. Mackay and H. Terrones, “Diamond from Graphene,” Nature 352, 762 (1991); E. R. Margine, A. N. Kolmogorov, D. Stoikovic, J. O. Sofo, and V. H. Crespi, “Theory of Genus Reduction in Alkaliinduced Graphitization of Nanoporous Carbon,” Phys. Rev. B 76, 115436 (2007).CrossRefADSGoogle Scholar
  28. 28.
    D. Vanderbilt and J. Tersoff, “Negative-Curvature Fullerene Analog of C60,” Phys. Rev. Lett. 68(4), 511–513 (1992).CrossRefADSGoogle Scholar
  29. 29.
    H. Terrones, M. Terrones, E. Hernandez, N. Grobert, J.-C. Charlier, and P. M. Ajayan, “New Metallic Allotropes of Planar and Tubular Carbon,” Phys. Rev. Lett. 84, 1716–1719 (2000).CrossRefADSGoogle Scholar
  30. 30.
    A. V. Rode, E. G. Gamaly, and B. Luther-Davies, “Formation of Cluster-Assembled Carbon Nano-Foam by High-Repetition-Rate Laser Ablation,” Appl. Phys. A70, 135–144 (2000).ADSGoogle Scholar
  31. 31.
    V. I. Tsebro and O. E. Omel’yanovskii, “Persistent Currents and Capture of Magnetic Flux in Multiconnected Carbon Nanotubular Structure,” Uspekhi Fiz. Nauk 170(8), 906–912 (2000); N. Park, M. Yoon, S. Berber, J. Ihm, E. Osawa, and D. Tomanek, “Magnetism of All-Carbon Nanostructures with Negative Gaussian Curvature,” Phys. Rev. Lett. 91 (23), 237–204 (2000).CrossRefGoogle Scholar
  32. 32.
    N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crommie, “Strain-Induced Pseudo-Magnetic Fields Greater than 300 Tesla in Graphene Nanobubbles,” Science 329(5991), 544–547 (2010).CrossRefADSGoogle Scholar
  33. 33.
    T. Lenosky, X. Gonze, M. Teter, and V. Elser, “Energetics of Negatively Curved Graphitic Carbon,” Nature 355, 333–335 (1992).CrossRefADSGoogle Scholar
  34. 34.
    R. E. Peierls, “Quelques propriétés typiques des corps solides,” Ann. Inst. H. Poincaré 5, 177–222 (1935); L. D. Landau, “To the Theory of Phase Transitions,” JETP 7, 19–33, 627–631 (1937) [in: Collected Papers of L. D. Landau (Pergamon, Oxford, 1965), pp. 193–209, 209–216].MATHMathSciNetGoogle Scholar
  35. 35.
    A. J. M. Giesbers, U. Zeitler, M. I. Katsnelson, L. A. Ponomarenko, T. M. Mohiuddin, and J. C. Maan, “Quantum-Hall Activation Gaps in Graphene,” Phys. Rev. Lett. 99, 206803 (2007); A. J. M. Giesbers, L. A. Ponomarenko, K. S. Novoselov, A. K. Geim, M. I. Katsnelson, J. C. Maan, and U. Zeitler, “Gap Opening in the Zeroth Landau Level of Graphene,” Phys. Rev. B 80, 201430(R) (2009), arXiv: 0904.0948v1.CrossRefADSGoogle Scholar
  36. 36.
    Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, “Experimental Observation of Quantum Hall Effect and Berry’s Phase in Graphene,” Nature 438(7065), 201–204 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Department of Applied MathematicsMoscow Institute of Electronics and MathematicsMoscowRussia

Personalised recommendations