Russian Journal of Mathematical Physics

, Volume 17, Issue 2, pp 159–191

Infinitesimals without logic

Article

Abstract

We introduce a ring of the so-called Fermat reals, which is an extension of the real field containing nilpotent infinitesimals. The construction is inspired by Smooth Infinitesimal Analysis (SIA) and provides a powerful theory of actual infinitesimals without any background in mathematical logic. In particular, in contrast to SIA, which admits models in intuitionistic logic only, the theory of Fermat reals is consistent with the classical logic. We face the problem of deciding whether or not a product of powers of nilpotent infinitesimals vanishes, study the identity principle for polynomials, and discuss the definition and properties of the total order relation. The construction is highly constructive, and every Fermat real admits a clear and order-preserving geometrical representation. Using nilpotent infinitesimals, every smooth function becomes a polynomial because the remainder in Taylor’s formulas is now zero. Finally, we present several applications to informal classical calculations used in physics, and all these calculations now become rigorous, and at the same time, formally equal to the informal ones. In particular, an interesting rigorous deduction of the wave equation is given, which clarifies how to formalize the approximations tied with Hooke’s law using the language of nilpotent infinitesimals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics (Pure and Applied Mathematics. Academic Press, 1988, 2nd ed., Dover, 2009).Google Scholar
  2. 2.
    E.T. Bell, Men of Mathematics (Simon and Schuster, New York, 1937).MATHGoogle Scholar
  3. 3.
    J.L. Bell, A Primer of Infinitesimal Analysis (Cambridge University Press, 1998).Google Scholar
  4. 4.
    V. Benci and M. Di Nasso, “A Ring Homomorphism is Enough to Get Nonstandard Analysis.” Bull. Belg. Math. Soc. Simon Stevin 10, 481–490, 2003.MATHMathSciNetGoogle Scholar
  5. 5.
    V. Benci and M. Di Nasso, “A Purely Algebraic Characterization of the Hyperreal Numbers,” Proc. Amer. Math. Soc. 133(9), 2501–05 (2005).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    W. Bertram, Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings (American Mathematical Society, Providence, 2008).Google Scholar
  7. 7.
    M. Berz, “Analysis on a Nonarchimedean Extension of the Real Numbers,” Mathematics Summer Graduate School of the German National Merit Foundation, MSUCL-933, Department of Physics, Michigan State University, 1992 and 1995 edition, 1994.Google Scholar
  8. 8.
    T. Bröcker, Differentiable Germs and Catastrophes, Vol. 17 of LMS Lect. Note Series (Cambridge University Press, Cambridge, 1975).MATHGoogle Scholar
  9. 9.
    J.H. Conway, On Numbers and Games, Number 6 in LMS Monographs (Academic Press, London & New York, 1976).MATHGoogle Scholar
  10. 10.
    P.A.M. Dirac, General Theory of Relativity (John Wiley and Sons, 1975).Google Scholar
  11. 11.
    C.H. Edwards, The Historical Development of the Calculus (Springer-Verlag, New York, 1979).MATHGoogle Scholar
  12. 12.
    C. Ehresmann, “Les prolongements d’une variété différentiable: Calculus des jets, prolongement principal,” C. R. Acad. Sci. Paris 233, 598–600 (1951).MathSciNetGoogle Scholar
  13. 13.
    A. Einstein, Investigations on the Theory of the Brownian Movement (Dover, 1926).Google Scholar
  14. 14.
    H. Eves, An Introduction to the History of Mathematics (Saunders College Publishing, Fort Worth, TX, 1990).MATHGoogle Scholar
  15. 15.
    P. Giordano, “Infinitesimal Differential Geometry,” Acta Math. Univ. Comenian. LXIII(2), 235–278 (2004).MathSciNetGoogle Scholar
  16. 16.
    P. Giordano, “Fermat Reals: Nilpotent Infinitesimals and Infinite Dimensional Spaces,” arXiv:0907.1872 (July 2009).Google Scholar
  17. 17.
    M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Vol. 14 of Grad. Texts in Math. (Springer, Berlin, 1973).MATHGoogle Scholar
  18. 18.
    A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Vol. 19 of Frontiers Appl. Math. (SIAM, 2000).Google Scholar
  19. 19.
    C.W. Henson, Foundations of Nonstandard Analysis. A Gentle Introduction to Nonstandard Extension. In L.O. Arkeryd, N.J. Cutland, and C.W. Henson, editors, Nonstandard Analysis: Theory and Applications (Edinburgh, 1996), pp. 1–49, Dordrecht, 1997. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., Vol. 493, Kluwer Acad. Publ.Google Scholar
  20. 20.
    A. Kock, Synthetic Differential Geometry, Vol 51 of LMS Lect. Note Series (Cambridge Univ. Press, 1981).Google Scholar
  21. 21.
    A. Kriegl and P.W. Michor, “Product Preserving Functors of Infinite Dimensional Manifolds,” Arch. Math. (Brno) 32(4), 289–306 (1996).MATHMathSciNetGoogle Scholar
  22. 22.
    R. Lavendhomme, Basic Concepts of Synthetic Differential Geometry (Kluwer Academic Publishers, Dordrecht, 1996).MATHGoogle Scholar
  23. 23.
    I. Moerdijk and G.E. Reyes, Models for Smooth Infinitesimal Analysis (Springer, Berlin, 1991).MATHGoogle Scholar
  24. 24.
    G. Prodi, Analisi matematica, Ed. Bollati Boringhieri (Torino, 1970).Google Scholar
  25. 25.
    K. Shamseddine, New Elements of Analysis on the Levi-Civita Field, PhD thesis, Michigan State University, East Lansing, Michigan (USA, 1999).Google Scholar
  26. 26.
    G.E. Silov, Analisi matematica. Funzioni di una variabile (it. transl.) (Mir, Mosca, 1978).Google Scholar
  27. 27.
    C. Truesdell, A First Course in Rational Continuum Mechanics: V.1 General Concepts, 2nd ed., Vol. 71 of Pure Appl. Math. (Academic Press Inc., 1991).Google Scholar
  28. 28.
    V.S. Vladimirov, Equazioni della fisica matematica (MIR, 1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Academy of ArchitectureUniversità della Svizzera ItalianaMendrisioSwitzerland

Personalised recommendations