Advertisement

Russian Journal of Mathematical Physics

, Volume 16, Issue 3, pp 350–362 | Cite as

Noncommutative geometry and arithmetics

  • P. AlmeidaEmail author
Article
  • 106 Downloads

Abstract

We intend to illustrate how the methods of noncommutative geometry are currently used to tackle problems in class field theory. Noncommutative geometry enables one to think geometrically in situations in which the classical notion of space formed of points is no longer adequate, and thus a “noncommutative space” is needed; a full account of this approach is given in [3] by its main contributor, Alain Connes. The class field theory, i.e., number theory within the realm of Galois theory, is undoubtedly one of the main achievements in arithmetics, leading to an important algebraic machinery; for a modern overview, see [23]. The relationship between noncommutative geometry and number theory is one of the many themes treated in [22, 7–9, 11], a small part of which we will try to put in a more down-to-earth perspective, illustrating through an example what should be called an “application of physics to mathematics,” and our only purpose is to introduce nonspecialists to this beautiful area.

Keywords

Prime Ideal Integral Domain Algebraic Number Noncommutative Geometry Algebraic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bernstein and S. Gelbart, Eds., An Introduction to the Langlands Program (Birkhäuser, 2003).Google Scholar
  2. 2.
    J.B. Bost and A. Connes, “Hecke Algebras, Type III Factors and Phase Transitions with Spontaneous Symmetry Breaking in Number Theory,” Selecta Math. (N.S.) 1(3), 411–457 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Connes, Noncommutative Geometry (Academic Press, Inc., San Diego, CA, 1994).zbMATHGoogle Scholar
  4. 4.
    A. Connes, “Trace Formula in Noncommutative Geometry and the Zeros of the Riemann Zeta Function,” Selecta Math. (N.S.) 5(1), 29–106 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Connes, “Noncommutative Geometry, Year 2000,” IHÉS, Preprint (2000).Google Scholar
  6. 6.
    A. Connes, “A Short Survey of Noncommutative Geometry,” IHÉS, Preprint (2000).Google Scholar
  7. 7.
    A. Connes and M. Marcolli, “From Physics to Number Theory via Noncommutative Geometry,” in Frontiers in Number Theory, Physics and Geometry. I, Ed. by P. Cartier et al. (Springer, 2006), pp. 249–347; Preprint, arXiv:hep-th/0404128.Google Scholar
  8. 8.
    A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives, AMS Colloquium Publ. 55 (AMS, Providence; Hindustan Book Agency, New Delhi, 2008); ftp://ftp.alainconnes.org/bookjuly.pdf.Google Scholar
  9. 9.
    A. Connes and M. Marcolli, “Renormalization, the Riemann-Hilbert Correspondence, and Motivic Galois Theory,” in Frontiers in Number Theory, Physics and Geometry II, Ed. by P. Cartier et al. (Springer, 2007); Preprint, arXiv:hep-th/0411114.Google Scholar
  10. 10.
    A. Connes, M. Marcolli, and N. Ramachandran, “KMS States and Complex Multiplication,” Selecta Math. (N.S.) 11(3–4), 325–347 (2005); Preprint (2005), arXiv:math.OA/0501424.zbMATHMathSciNetGoogle Scholar
  11. 11.
    C. Consani and M. Marcolli, Eds., Noncommutative Geometry and Number Theory, Aspects Math. E 37 (Vieweg, 2006).Google Scholar
  12. 12.
    S. Gelbart, ”An Elementary Introduction to the Langlands Program,” Bull. Amer. Math. Soc. (N.S.) 10(2), 177–219 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Ha and F. Paugam, “Bost-Connes-Marcolli Systems for Shimura Varieties. Part I,” Int. Math. Res. Papers 5 (2005).Google Scholar
  14. 14.
    S. Haran, The Mysteries of the Real Prime, London Math. Soc. Monographs (New Series) 25 (The Clarendon Press, Oxford University Press, New York, 2001).zbMATHGoogle Scholar
  15. 15.
    G. J. Janusz, “Algebraic Number Fields,” Graduate Studies in Mathematics 7 (American Mathematical Society, Providence, RI, 1996 (ed. or. 1973)).zbMATHGoogle Scholar
  16. 16.
    J. M. Gracia-Bondía, J.C. Várilly, and H. Figueroa, Elements of Noncommutative Geometry (Birkhäuser, Boston, 2001).zbMATHGoogle Scholar
  17. 17.
    M. Khalkhali, “Very Basic Noncommutative Geometry,” Preprint (2004), arXiv:math.KT/0408416.Google Scholar
  18. 18.
    H. Koch, “Algebraic Number Fields,” in Encyclopaedia of Mathematical Sciences 62, Number Theory II, Ed. by A. N. Parshin and I. R. Shafarevich (Springer, 1992).Google Scholar
  19. 19.
    G. Landi, An Introduction to Noncommutative Spaces and Their Geometries (Springer, Berlin, 1998).Google Scholar
  20. 20.
    G. W. Mackey, Unitary Group Representations, Advanced Books Classics (Addison-Wesley, 1989 (or. ed. 1978)).Google Scholar
  21. 21.
    Y. I. Manin, “Von Zahlen und Figuren,” Preprint (2002), arXiv:math.AG/0201005.Google Scholar
  22. 22.
    M. Marcolli, Arithmetic Noncommutative Geometry, Univ. Lecture Ser. 36 (American Mathematical Society, 2005); Preprint, arXiv:math.QA/0409520.Google Scholar
  23. 23.
    K. Myiake, Ed., Class Field Theory — Its Centenary and Prospect, Advanced Studies in Pure Mathematics, Msj International Research Institute (Tokyo, 1998).Google Scholar
  24. 24.
    J. Neukirch, Algebraic Number Theory (Springer, 1999).Google Scholar
  25. 25.
    N. Schappacher, “On the History of Hilbert’s Twelfth Problem, a Comedy of Errors,” in Matériaux pour l’histoire des mathématiques au XXème siècle — Actes du colloque à la mémoire de Jean Dieudonné (Nice 1996), Sémin. Congr. 3 (Société Mathématique de France, 1998).Google Scholar
  26. 26.
    P. Stevenhagen, “Hilbert’s 12th Problem, Complex Multiplication and Shimura Reciprocity,” in Class Field Theory — Its Centenary and Prospect, Ed. by K. Myiake, Adv. Stud. Pure Math. 30 (Msj International Research Institute, Tokyo, 1998).Google Scholar
  27. 27.
    J. C. Várilly, An Introduction to Noncommutative Geometry (European Mathematical Society, 2006).Google Scholar
  28. 28.
    S. Vladut, Kronecker’s Jugendtraum and Modular Functions (Gordon and Breach, 1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Dep. de Matemática do Instituto Superior TécnicoUniv. Técnica de LisboaLisboaPortugal

Personalised recommendations