Russian Journal of Mathematical Physics

, Volume 16, Issue 2, pp 251–264 | Cite as

Construction of uniform asymptotic solutions of wave-type differential equations by methods of catastrophe theory

  • A. S. Kryukovskii
  • D. S. Lukin
  • D. V. Rastyagaev


A mathematical apparatus for solving differential equations of special type by the methods of main, edge, and corner catastrophes is developed. The fundamentals of the wave catastrophe theory are considered, including the classification and methods of constructing uniform asymptotics used to describe the structure of wave fields in these domains, together with an analysis of the structure of the field. Classes of special functions used to construct uniform asymptotic expansions of wave fields are generally described together with the properties of these classes and the methods of computation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Arnold, S.M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, Vol. I: The Classification of Critical points, Caustics and Wave Fronts (Nauka, Moscow, 1982; Birkhauser, Boston, 1985).Google Scholar
  2. 2.
    V. M. Babich and V. S. Buldyrev, Short-Wavelength Diffraction Theory. Asymptotic Methods (Nauka, Moscow, 1972; Springer, Berlin, 1991).Google Scholar
  3. 3.
    V. P. Maslov and M.V. Fedoruk, Semi-Classical Approximation in Quantum Mechanics (Nauka, Moscow, 1976); V.P. Maslov and M. V. Fedoriuk (Reidel, Dordrecht, 1981).Google Scholar
  4. 4.
    V. P. Maslov, Perturbation Theory and Asymptotic Methods (Izdat. Moskov. Gos. Univ., Moscow, 1965; Dunod, Paris, 1972).Google Scholar
  5. 5.
    V. A. Borovikov and B.Ye. Kinber, Geometrical Theory of Diffraction (Svyaz, Moscow, 1978; Institution of Electrical Engineers (IEE), London, 1994).Google Scholar
  6. 6.
    A. S. Kryukovsky [Kryukovskii], D. S. Lukin, and E.A. Palkin, “Uniform Asymptotics for Evaluating Oscillatory Edge Integrals by Methods of Catastrophe Theory,” Soviet J. Numer. Anal. Math. Modeling 2(4), 279–312 (1987).CrossRefGoogle Scholar
  7. 7.
    E. B. Ipatov, A. S. Kryukovskii, D. S. Lukin, and E.A. Palkin, “Boundary Catastrophes and Asymptotics,” Dokl. Akad. Nauk SSSR 291(4), 823–827 (1986).MathSciNetGoogle Scholar
  8. 8.
    A. S. Kryukovskii, D. S. Lukin, and E.A. Palkin, Edge and Angular Catastrophes in Problems of Wave Diffraction and Propagation (Kazan Aviation Institute, Kazan, 1988).Google Scholar
  9. 9.
    A. S. Kryukovskii, D. S. Lukin, and E.A. Palkin, “Corner Catastrophes and Uniform Asymptotics,” Dokl. Akad. Nauk SSSR 341(4), 456–459 (1995).MathSciNetGoogle Scholar
  10. 10.
    A. S. Kryukovskii and D. S. Lukin, “Geometric Diffraction Theory Created by the Methods of Edge and Angle Catastrophes,” Radiotekhnika i Elektronika 43(9), 1–16 (1998).Google Scholar
  11. 11.
    A. S. Kryukovskii, D. S. Lukin, and E.A. Palkin, “Uniform Asymptotics of Integrals with Rapidly Oscillating Functions with Degenerate Saddle Points,” Inst. Electrical Engrg., Akad. Nauk SSSR, No. 41(413) (Moscow, 1984).Google Scholar
  12. 12.
    M. V. Fedoryuk, Asymptotics: Integrals and Series (Nauka, Moscow, 1987).MATHGoogle Scholar
  13. 13.
    J. J. Duistermaat, “Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities.” Comm. Pure Appl. Math. 27(2), 207–281 (1974).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. S. Kryukovskii and D. V. Rastyagaev, “Classification of Unimodal and Bimodal Corner Singularities,” Funktsional. Anal. i Prilozhen. 26(3), 77–79 (1992) [Funct. Anal. Appl. 26 (3), 213–215 (1992)].CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. S. Kryukovskii, “Local Uniform Asymptotics of Wave Fields in the Vicinity of Basic and Boundary Cuspoidal Caustics,” Radiotekhnika i Elektronika 41(1), 59–65 (1996).Google Scholar
  16. 16.
    D. Siersma, “Singularities of Functions on Boundaries, Corners, etc.,” Quart. J. Math. Oxford Ser. 32(125), 119–127 (1981).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. S. Kryukovskii, D. S. Lukin, and E.A. Palkin, “Special Functions of Wave Catastrophes,” Inst. Electrical Engrg., Akad. Nauk SSSR, No. 43 (415) (Moscow, 1984).Google Scholar
  18. 18.
    A. S. Kryukovskii, “Method of Ordinary Differential Equations for Computing the Special Functions of Wave Catastrophes (SWC),” in: Diffraction and Propagation of Electromagnetic and Acoustic Waves (MFTI, Moscow, 1992) pp. 29–48.Google Scholar
  19. 19.
    D. Ludwig, “Uniform Asymptotic Expansions at a Caustic,” Comm. Pure Appl. Math. 19(2), 215–250 (1966).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    N. Bleistein, “Uniform Asymptotic Expansions of Integrals with Many Nearby Stationary Points and Algebraic Singularities,” J. Math. Mech. 27(6), 533–559 (1967).MathSciNetGoogle Scholar
  21. 21.
    S. O. Rice, “Uniform Asymptotic Expansions for Saddle Point Integrals — Application to a Probability Distribution Occurring in Noise Theory,” Bell. System Tech. J. 47(9), 1971–2013 (1968).MATHMathSciNetGoogle Scholar
  22. 22.
    A. S. Kryukovskii, D. S. Lukin, E. A. Palkin, and D. V. Rastyagaev, “Wave Catastrophes: Types of Focusing in Diffraction and Propagation of Electromagnetic Waves,” Radiotekhnika i Elektronika 51(10), 1155–1192 (2006).Google Scholar
  23. 23.
    A. S. Kryukovskii, D. V. Rastyagaev, and I. A. Verzigaev, “Three-Dimensional Space-Time Focusing of Catastrophe Wave Fields,” Radiotekhnika i Elektronika 44(4), 455–462 (1999).Google Scholar
  24. 24.
    T. V. Dorokhina, A. S. Kryukovskii, and D. S. Lukin, “Information System ‘Wave Catastrophes in Radiophysics, Acoustics, and Quantum Mechanics’,” Electromagnetic Waves and Electronic Systems 12(8), 71–75 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. S. Kryukovskii
    • 1
  • D. S. Lukin
    • 2
  • D. V. Rastyagaev
    • 1
  1. 1.Russian New UniversityMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations