Russian Journal of Mathematical Physics

, Volume 16, Issue 1, pp 93–96 | Cite as

Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on ℤ p



The objective of the paper is to indicate a symmetry of the multivariate p-adic invariant integral on ℤ p , which leads to a relation between the power sum polynomials and higher-order Euler polynomials.


Euler Number Symmetry Relation Euler Polynomial Nonlinear Math Exponential Generate Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Comtet, Advanced Combinatories (Reidel, Dordrecht, 1974).Google Scholar
  2. 2.
    E. Deeba and D. Rodriguez, “Stirling’s Series and Bernoulli Numbers,” Amer. Math. Monthly 98, 423–426 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Cenkci, M. Can, and V. Kurt, “p-Adic Interpolation Functions and Kummer-Type Congruences for q-Twisted Euler Numbers,” Adv. Stud. Contemp. Math. 9, 203–216 (2004).zbMATHMathSciNetGoogle Scholar
  4. 4.
    F. T. Howard, “Application of a Recurrence for the Bernoulli Numbers,” J. Number Theory 52, 157–172 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Kim, “The Modified q-Euler Numbers and Polynomials,” Adv. Stud. Contemp. Math. 16, 161–170 (2008).zbMATHGoogle Scholar
  6. 6.
    T. Kim, “Euler Numbers and Polynomials Associated with Zeta Functions,” Abstr. Appl. Anal. (Article ID 581582), 1–11 (2008).Google Scholar
  7. 7.
    K. Shiratani and S. Yamamoto, “On a p-Adic Interpolation Function for the Euler Numbers and Its Derivatives,” Mem. Fac. Sci. Kyushu Univ. Ser. A 39, 113–125 (1985).zbMATHMathSciNetGoogle Scholar
  8. 8.
    H. J. H. Tuenter, “A Symmetry of Power Sum Polynomials and Bernoulli Numbers,” Amer. Math. Monthly 108, 258–261 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    T. Kim, “q-Volkenborn Integration,” Russ. J. Math. Phys. 9, 288–299 (2002).zbMATHMathSciNetGoogle Scholar
  10. 10.
    T. Kim, “A Note on p-Adic q-Integral on ℤp Associated with q-Euler Numbers,” Adv. Stud. Contemp. Math. 15, 133–138 (2007).zbMATHGoogle Scholar
  11. 11.
    T. Kim, “On p-Adic Interpolating Function for q-Euler Numbers and Its Derivatives,” J. Math. Anal. Appl. 339, 598–608 (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    T. Kim, “q-Extension of the Euler Formula and Trigonometric Functions,” Russ. J. Math. Phys. 14, 275–278 (2007).CrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Kim, “Power Series and Asymptotic Series Associated with the q-Analog of the Two-Variable p-Adic L-Function,” Russ. J. Math. Phys. 12, 186–196 (2005).zbMATHMathSciNetGoogle Scholar
  14. 14.
    T. Kim, “Non-Archimedean q-Integrals Associated with Multiple Changhee q-Bernoulli Polynomials,” Russ. J. Math. Phys. 10, 91–98 (2003).zbMATHMathSciNetGoogle Scholar
  15. 15.
    T. Kim, “q-Euler Numbers and Polynomials Associated with p-Adic q-Integrals,” J. Nonlinear Math. Phys. 14, 15–27 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    B. A. Kupershmidt, “Reflection Symmetries of q-Bernoulli Polynomials,” J. Nonlinear Math. Phys. 12, 412–422 (2005).CrossRefMathSciNetGoogle Scholar
  17. 17.
    H. Ozden, Y. Simsek, S.-H. Rim, and I.N. Cangul, “A Note on p-Adic q-Euler Measure,” Adv. Stud. Contemp. Math. 14, 233–239 (2007).MathSciNetGoogle Scholar
  18. 18.
    M. Schork, “Ward’s ‘Calculus of Sequences’, q-Calculus and the Limit q → −1,” Adv. Stud. Contemp. Math. 13, 131–141 (2006).zbMATHMathSciNetGoogle Scholar
  19. 19.
    M. Schork, “Combinatorial Aspects of Normal Ordering and Its Connection to q-Calculus,” Adv. Stud. Contemp. Math. 15, 49–57 (2007).zbMATHMathSciNetGoogle Scholar
  20. 20.
    Y. Simsek, “On p-Adic Twisted q-L-Functions Related to Generalized Twisted Bernoulli Numbers,” Russ. J. Math. Phys. 13, 340–348 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Y. Simsek, “Theorems on Twisted L-Function and Twisted Bernoulli Numbers,” Adv. Stud. Contemp. Math. 11, 205–218 (2005).zbMATHMathSciNetGoogle Scholar
  22. 22.
    Y. Simsek, “q-Dedekind Type Sums Related to q-Zeta Function and Basic L-Series,” J. Math. Anal. Appl. 318, 333–351 (2006).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Division of General Education-MathematicsKwangwoon UniversitySeoulS. Korea

Personalised recommendations