Russian Journal of Mathematical Physics

, Volume 16, Issue 1, pp 17–60 | Cite as

Boundary relations and generalized resolvents of symmetric operators

  • V. DerkachEmail author
  • S. Hassi
  • M. Malamud
  • H. de Snoo


The Kreĭn-Naĭmark formula provides a parametrization of all selfadjoint exit space extensions of a (not necessarily densely defined) symmetric operator in terms of maximal dissipative (in ℂ+) holomorphic linear relations on the parameter space (the so-called Nevanlinna families). The new notion of boundary relation makes it possible to interpret these parameter families as Weyl families of boundary relations and to establish a simple coupling method to construct generalized resolvents from given parameter families. A general version of the coupling method is introduced and the role of the boundary relations and their Weyl families in the Kreĭn-Naĭmark formula is investigated and explained. These notions lead to several new results and new types of solutions to problems involving generalized resolvents and their applications, e.g., in boundary-value problems for (ordinary and partial) differential operators. For instance, an old problem going back to M. A. Naĭmark and concerning the analytic characterization of the so-called Naĭmark extensions is solved.


Hilbert Space Linear Relation Symmetric Operator Selfadjoint Operator Boundary Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. I. Achieser and I.M. Glasmann, Theorie der linearen Operatoren im Hilbertraum, 8th ed. (Verlag Harri Deutsch, Thun und Akademie-Verlag, Berlin, 1981).Google Scholar
  2. 2.
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics (Springer, New York, 1988).zbMATHGoogle Scholar
  3. 3.
    S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators, London Math. Soc. Lecture Note Ser. 271 (Cambridge University Press, Cambridge, 2000).Google Scholar
  4. 4.
    T.Ya. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with Indefinite Metric (John Wiley and Sons, New York, 1989).Google Scholar
  5. 5.
    J. Behrndt and P. Jonas, “Boundary Value Problems with Local Generalized Nevanlinna Functions in the Boundary Condition,” Integral Equations Operator Theory 55, 453–475 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Behrndt and H.-C. Kreusler, “Boundary Relations and Generalized Resolvents of Symmetric Relations in Krein Spaces,” Integral Equations Operator Theory 59, 309–327 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Behrndt, A. Luger, and C. Trunk, “Generalized Resolvents of a Class of Symmetric Operators in Krein Spaces,” Oper. Theory Adv. Appl. 175, 13–32 (2007).CrossRefMathSciNetGoogle Scholar
  8. 8.
    C. Bennewitz, “Symmetric Relations on a Hilbert Space,” Lecture Notes in Math. 280, 212–218 (1972).CrossRefMathSciNetGoogle Scholar
  9. 9.
    Yu.M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators (Naukova Dumka, Kiev, 1965; Amer. Math. Soc., Providence, 1968).Google Scholar
  10. 10.
    J. Brasche, M. Malamud, and H. Neidhardt, “Weyl Function and Spectral Properties of Self-Adjoint Extensions,” Integral Equations Operator Theory 43, 264–289 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Bruning and V.A. Geyler, “Scattering on Compact Manifolds with Infinitely Many Horns,” J. Math. Phys. 44, 371–405 (2003).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    J. Bruning, V. Geyler, and K. Pankrashkin, “Cantor and Band Spectra for Periodic Quantum Graphs with Magnetic Fields,” Comm. Math. Phys. 269, 87–105 (2007).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    E. A. Coddington, “Extension Theory of Formally Normal and Symmetric Subspaces,” Mem. Amer. Math. Soc. 134, 1–80 (1973).MathSciNetGoogle Scholar
  14. 14.
    V. A. Derkach, S. Hassi, M.M. Malamud, and H. S.V. de Snoo, “Generalized Resolvents of Symmetric Operators and Admissibility,” Methods Funct. Anal. Topology 6(3), 24–55 (2000).zbMATHMathSciNetGoogle Scholar
  15. 15.
    V. A. Derkach, S. Hassi, M.M. Malamud, and H. S.V. de Snoo, “Boundary Relations and Weyl Families,” Trans. Amer. Math. Soc. 358, 5351–5400 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    V. A. Derkach, S. Hassi, M.M. Malamud, and H. S.V. de Snoo, “Boundary Relations and Orthogonal Couplings of Symmetric Operators,” in Proc. Algorithmic Information Theory Conference, Vaasa 2005, Vaasan Yliopiston Julkaisuja, Selvityksiä ja raportteja 124, 41–56 (2005).Google Scholar
  17. 17.
    V. A. Derkach, S. Hassi, M. Malamud, and H. S.V. de Snoo, “Boundary Relations and Generalized Resolvents of Symmetric Operators,” arXiv, math.SP/0610299.Google Scholar
  18. 18.
    V. A. Derkach and M. M. Malamud, “On Weyl Function and Hermitian Operators with Gaps,” Dokl. Akad. Nauk SSSR 293, 1041–1046 (1987).MathSciNetGoogle Scholar
  19. 19.
    V. A. Derkach and M. M. Malamud, “Generalized Resolvents and the Boundary Value Problems for Hermitian Operators with Gaps,” J. Funct. Anal. 95, 1–95 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    V. A. Derkach and M. M. Malamud, “Characteristic Functions of Almost Solvable Extensions of a Hermitian Operators,” Ukraïn. Mat. Zh. 44, 435–459 (1992).MathSciNetGoogle Scholar
  21. 21.
    V. A. Derkach and M. M. Malamud, “The Extension Theory of Hermitian Operators and the Moment Problem,” J. Math. Sci. 73, 141–242 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Dijksma, H. Langer, and H. S. V. de Snoo, “Symmetric Sturm-Liouville Operator with Eigenvalue Depending Boundary Conditions,” Canadian Math. Soc. Conference Proceedings 8, 87–116 (1987).Google Scholar
  23. 23.
    A. Dijksma, H. Langer, and H. S. V. de Snoo, “Hamiltonian Systems with Eigenvalue Depending Boundary Conditions,” Oper. Theory Adv. Appl. 35, 37–83 (1988).Google Scholar
  24. 24.
    A. Dijksma, H. Langer, and H. S.V. de Snoo, “Generalized Coresolvents of Standard Isometric Operators and Generalized Resolvents of Standard Symmetric Relations in Kreĭn Spaces,” Oper. Theory Adv. Appl. 48, 261–274 (1990).Google Scholar
  25. 25.
    W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation (Springer, Berlin-Heidelberg-New York, 1974).zbMATHGoogle Scholar
  26. 26.
    F. Gesztesy, K. Makarov, and E. Tsekanovskii, “An Addendum to Krein’s Formula,” J. Math. Anal. Appl. 222, 594–606 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations (Kluwer Academic Publishers, Dordrecht, 1990).Google Scholar
  28. 28.
    V. I. Gorbachuk, M. L. Gorbachuk, and A.N. Kochubei, “The Theory of Extensions of Symmetric Operators, and Boundary Value Problems for Differential Equations,” Ukraïn. Mat. Zh. 41(10), 1299–1313, 1436 (1989); [Ukrainian Math. J. 41 (10), 1117–1129 (1990)].MathSciNetGoogle Scholar
  29. 29.
    S. Hassi, M. Kaltenbäck, and H. S. V. de Snoo, “The Sum of Matrix Nevanlinna Functions and Selfadjoint Extensions in Exit Spaces,” Oper. Theory Adv. Appl. 103, 137–154 (1998).Google Scholar
  30. 30.
    S. Hassi, M. Malamud, and V. Mogilevskiĭ, “Generalized Resolvents and Boundary Triplets for Dual Pairs of Linear Relations,” Methods Funct. Anal. Topology 11, 170–187 (2005).zbMATHMathSciNetGoogle Scholar
  31. 31.
    S. Hassi, H. S.V. de Snoo, A.E. Sterk, and H. Winkler, “Nonstandard Boundary Conditions for a Class of Sturm-Liouville Operators,” Rev. Roumaine Math. Pures Appl. 51, 641–653 (2006).zbMATHMathSciNetGoogle Scholar
  32. 32.
    I. S. Kac, “Spectral Multiplicity of a Second-Order Differential Operator and Expansion in Eigenfunctions,” Izv. Akad Nauk. SSSR Ser. Mat. 27, 1081–1112 (1963).zbMATHMathSciNetGoogle Scholar
  33. 33.
    I. S. Kac and M. G. Kreĭn, “R-Functions — Analytic Functions Mapping the Upper Halfplane into Itself,” Supplement to the Russian edition of F.V. Atkinson, Discrete and Continuous Boundary Problems (Mir, Moscow, 1968) [in Russian]; English translation: Amer. Math. Soc. Transl. Ser. 2 103, 1–18 (1974).Google Scholar
  34. 34.
    T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin-Heidelberg-New York, 1966).zbMATHGoogle Scholar
  35. 35.
    M. G. Kreĭn and M.A. Krasnosel’skii, “General Theorems about Extensions of Hermitian Operators,” Uspekhi Mat. Nauk 2, 60–106 (1947).Google Scholar
  36. 36.
    M. G. Kreĭn, “On Hermitian Operators with Defect Indices (1, 1),” Dokl. Akad. Nauk SSSR 43, 339–342 (1944).Google Scholar
  37. 37.
    M. G. Kreĭn, “On Resolvents of Hermitian Operator with Deficiency Index (m,m),” Dokl. Akad. Nauk SSSR 52, 657–660 (1946).Google Scholar
  38. 38.
    M. G. Kreĭn and H. Langer, “On Defect Subspaces and Generalized Resolvents of Hermitian Operator in Pontryagin Space,” Funktsional. Anal. i Prilozhen. 5, 59–71 (1971); ibid. 5, 54–69 (1971); [Funct. Anal. Appl. 5, 136–146 (1971); ibid. 5, 217–228 (1971)].Google Scholar
  39. 39.
    M. G. Kreĭn and Yu. L. Shmul’jan, “On Linear Fractional Transformations with Operator Coefficients,” Amer. Math. Soc. Transl. 103, 125–152 (1974).Google Scholar
  40. 40.
    H. Langer and B. Textorius, “On Generalized Resolvents and Q-Functions of Symmetric Linear Relations (Subspaces) in Hilbert Space,” Pacific J. Math. 72, 135–165 (1977).zbMATHMathSciNetGoogle Scholar
  41. 41.
    M. M. Malamud, “On a Formula for the Generalized Resolvents of a Non-Densely Defined Hermitian Operator,” Ukraïn. Mat. Zh. 44, 1658–1688 (1992).zbMATHMathSciNetGoogle Scholar
  42. 42.
    V. Mogilevskiĭ, “Boundary Triplets and Kreĭn Type Resolvent Formula for Symmetric Operators with Unequal Defect Numbers,” Methods Funct. Anal. Topology 12, 258–280 (2006).zbMATHMathSciNetGoogle Scholar
  43. 43.
    M. A. Naĭmark, “On Spectral Functions of a Symmetric Operator,” Izv. Akad. Nauk SSSR Ser. Mat. 7, 285–296 (1943).Google Scholar
  44. 44.
    M. A. Naĭmark, Linear Differential Operators, 2nd ed. (Nauka, Moscow, 1969; Frederick Ungar, New York, 1968).Google Scholar
  45. 45.
    K. Pankrashkin, “Spectra of Schrödinger Operators on Equilateral Quantum Graphs,” Lett. Math. Phys. 77, 139–154 (2006).Google Scholar
  46. 46.
    B. S. Pavlov, “A Model of Zero-Radius Potential with Internal Structure,” Teoret. Mat. Fiz. 59, 345–353 (1984).MathSciNetGoogle Scholar
  47. 47.
    A. Posilikano, “A Krein-Like Formula for Singular Perturbations of Self-Adjoint Operators and Applications,” J. Funct. Anal. 183, 109–147 (2001).CrossRefMathSciNetGoogle Scholar
  48. 48.
    Yu. L. Shmul’jan, “Theory of Linear Relations, and Spaces with Indefinite Metric,” Funktsional. Anal. i Prilozhen. 10, 67–72 (1976).CrossRefGoogle Scholar
  49. 49.
    Yu. L. Shmul’jan, “Transformers of Linear Relations in J-Spaces,” Funktsional. Analiz i Prilozhen. 14, 39–44 (1980) [Funct. Anal. Appl. 14, 110–113 (1980)].Google Scholar
  50. 50.
    B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators in Hilbert Space (Budapest, 1967).Google Scholar
  51. 51.
    A. V. Štraus [Shtraus], “One-Parameter Families of Extensions of a Symmetric Operator,” Izv. Akad. Nauk SSSR Ser. Mat. 30, 1325–1352 (1966).zbMATHMathSciNetGoogle Scholar
  52. 52.
    A. V. Štraus [Shtraus], “Extensions and Generalized Resolvents of a Non-Densely Defined Symmetric Operator,” Izv. Akad. Nauk SSSR Ser. Mat. 34, 175–202 (1970) [Math. USSR-Izv. 4, 179–208 (1970)].MathSciNetGoogle Scholar
  53. 53.
    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland, Amsterdam-New York, 1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of MathematicsDonetsk UniversityDonetskUkraine
  2. 2.Department of Mathematics and StatisticsUniversity of VaasaVaasaFinland
  3. 3.Institute of Applied Math. and MechanicsNational Academy of Sciences of UkraineDonetskUkraine
  4. 4.Department of MathematicsUniversity of GroningenGroningenNederland

Personalised recommendations