Russian Journal of Mathematical Physics

, Volume 15, Issue 4, pp 447–459

Multiple two-variable p-adic q-L-function and its behavior at s = 0

• M. Cenkci
• Y. Simsek
• V. Kurt
Article

Abstract

The objective of this paper is to construct a multiple p-adic q-L-function of two variables which interpolates multiple generalized q-Bernoulli polynomials. By using this function, we solve a question of Kim and Cho. We also define a multiple partial q-zeta function which is related to the multiple q-L-function of two variables. Finally, we give a finite-sum representation of the multiple p-adic q-L-function of two variables and prove a multiple q-extension of the generalized formula of Diamond and Ferrero-Greenberg.

Keywords

Zeta Function Bernoulli Number Dirichlet Character Primitive Dirichlet Character Multiple Zeta Function
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

1. 1.
T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics (Springer, New York, 1985).Google Scholar
2. 2.
M. Cenkci, M. Can, and V. Kurt, “p-Adic Interpolation Functions and Kummer-Type Congruences for q-Twisted and Generalized q-Twisted Euler Numbers,” Adv. Stud. Contemp. Math. 9(2), 203–216 (2004).
3. 3.
M. Cenkci and M. Can, “Some Results on q-Analogue of the Lerch Zeta Function,” Adv. Stud. Contemp. Math. 12(2), 213–223 (2006).
4. 4.
J. Diamond, “The p-Adic Log Gamma Function and p-Adic Euler Constants,” Trans. Amer. Math. Soc. 233, 321–337 (1977).
5. 5.
B. Ferrero and R. Greenberg, “On the Behaviour of p-Adic L-Functions at s = 0,” Invent. Math. 50, 91–102 (1978).
6. 6.
G. J. Fox, “A Method of Washington Applied to the Derivation of a Two-Varible p-Adic L-Function,“ Pacific J. Math. 209(1), 31–40 (2003).
7. 7.
K. Iwasawa, Lectures on p-Adic L-Functions, Ann. Math. Studies 74 (Princeton University Press, Princeton, 1972).Google Scholar
8. 8.
L. Jang, T. Kim, and D.-W. Park, “Kummer Congruence for the Bernoulli Numbers of Higher Order,“ Appl. Math. Comput. 151, 589–593 (2004).
9. 9.
T. Kim, “On p-Adic q-L-Functions and Sums of Powers,” Discrete Math. 252, 179–187 (2002).
10. 10.
T. Kim, “q-Volkenborn Integration,” Russ. J. Math. Phys. 9(3), 288–299 (2002).
11. 11.
T. Kim, “Non-Archimedean q-Integrals Associated with Multiple Changhee q-Bernoulli Polynomials,“ Russ. J. Math. Phys. 10(1), 91–98 (2003).
12. 12.
T. Kim, “On Euler-Barnes Multiple Zeta Functions,” Russ. J. Math. Phys. 10(3), 261–267 (2003).
13. 13.
T. Kim, “Sums of Powers of Consequtive q-Integers,” Adv. Stud. Contemp. Math. 9, 15–18 (2004).
14. 14.
T. Kim, “Analytic Continuation of Multiple q-Zeta Functions and Their Values at Negative Integers,“ Russ. J. Math. Phys. 11(1), 71–76 (2004).
15. 15.
T. Kim, “Power Series and Asymptotic Series Associated with the q-Analog of the Two Variable p-Adic L-Function,” Russ. J. Math. Phys. 12(2), 186–196 (2005).
16. 16.
T. Kim, “A New Approach to p-Adic q-L-Function,” Adv. Stud. Contemp. Math. 12(1), 61–72 (2006).
17. 17.
T. Kim, “Multiple p-Adic L-Function,” Russ. J. Math. Phys. 13(2), 151–157 (2006).
18. 18.
T. Kim and J.-S. Cho, “A Note on Multiple Dirichlet’s q-L-Function,” Adv. Stud. Contemp. Math. 11(1), 57–60 (2005).
19. 19.
N. Koblitz, “A New Proof of Certain Formulas for p-Adic L-Functions,” Duke Math. J. 46(2), 455–468 (1979).
20. 20.
N. Koblitz, p-Adic Analysis: A Short Course on Recent Work, London Math. Soc. Lecture Notes Ser. 46 (Cambridge University Press, Cambridge-New York, 1980).
21. 21.
T. Kubota, H.-W. Leopoldt, “Eine p-adische Theorie der Zetawerte I, Einführung der p-adischen Dirichletschen L-Funktionen,” J. Reine Angew. Math., no. 214/215, 328–339 (1964).Google Scholar
22. 22.
C. A. Nelson and M.G. Gartley, “On the Zeros of the q-Analogue of Exponential Function,” J. Phys. A: Math. Gen. 24, 3857–3881 (1994).
23. 23.
C. A. Nelson and M.G. Gartley, “On the Two q-Analogues of Logarithmic Functions: lnq(w), ln(lnq(w)),“ J. Phys. A: Math. Gen. 27, 8099–8115 (1996).
24. 24.
N. Nörlund, Vorlesungen über Differenzenrechnung (Chelsea, New York, 1954).Google Scholar
25. 25.
K. Shiratani and S. Yamamato, “On a p-Adic Interpolation Function for the Euler Numbers and Its Derivative,” Mem. Fac. Sci. Kyushu Univ. 39, 113–125 (1985).
26. 26.
Y. Simsek, “On p-Adic Twisted q-L-Functions Related to Generalized Twisted Bernoulli Numbers,“ Russ. J. Math. Phys. 13(3), 340–348 (2006).
27. 27.
Y. Simsek, “On Twisted q-Hurwitz Zeta Function and q-Two-Variable L-function,” Appl. Math. Comput. 187(1), 466–473 (2007).
28. 28.
29. 29.
Y. Simsek, “The Behavior of the Twisted p-Adic (h, q)-L-Functions at s = 0,” J. Korean Math. Soc. 44(4), 915–929 (2007).
30. 30.
Y. Simsek, D. Kim, and S.-H. Rim, “On the Two Variable q-L-Series,” Adv. Stud. Contemp. Math. 10(2), 131–142 (2005).
31. 31.
H.M. Srivastava, T. Kim, and Y. Simsek, “q-Bernoulli Numbers and Polynomials Associated with Multiple q-Zeta Functions and Basic L-Series,” Russ. J. Math. Phys. 12(2), 241–268 (2005).
32. 32.
L. C. Washington, “A Note on p-Adic L-Functions,” J. Number Theory 8, 245–250 (1976).
33. 33.
L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed. (Springer, New York, 1997).
34. 34.
P. T. Young, “On the Behavior of Some Two-Variable p-Adic L-Function,” J. Number Theory 98, 67–86 (2003).