Advertisement

Russian Journal of Mathematical Physics

, Volume 15, Issue 4, pp 447–459 | Cite as

Multiple two-variable p-adic q-L-function and its behavior at s = 0

  • M. Cenkci
  • Y. SimsekEmail author
  • V. Kurt
Article

Abstract

The objective of this paper is to construct a multiple p-adic q-L-function of two variables which interpolates multiple generalized q-Bernoulli polynomials. By using this function, we solve a question of Kim and Cho. We also define a multiple partial q-zeta function which is related to the multiple q-L-function of two variables. Finally, we give a finite-sum representation of the multiple p-adic q-L-function of two variables and prove a multiple q-extension of the generalized formula of Diamond and Ferrero-Greenberg.

Keywords

Zeta Function Bernoulli Number Dirichlet Character Primitive Dirichlet Character Multiple Zeta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics (Springer, New York, 1985).Google Scholar
  2. 2.
    M. Cenkci, M. Can, and V. Kurt, “p-Adic Interpolation Functions and Kummer-Type Congruences for q-Twisted and Generalized q-Twisted Euler Numbers,” Adv. Stud. Contemp. Math. 9(2), 203–216 (2004).zbMATHMathSciNetGoogle Scholar
  3. 3.
    M. Cenkci and M. Can, “Some Results on q-Analogue of the Lerch Zeta Function,” Adv. Stud. Contemp. Math. 12(2), 213–223 (2006).zbMATHMathSciNetGoogle Scholar
  4. 4.
    J. Diamond, “The p-Adic Log Gamma Function and p-Adic Euler Constants,” Trans. Amer. Math. Soc. 233, 321–337 (1977).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. Ferrero and R. Greenberg, “On the Behaviour of p-Adic L-Functions at s = 0,” Invent. Math. 50, 91–102 (1978).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    G. J. Fox, “A Method of Washington Applied to the Derivation of a Two-Varible p-Adic L-Function,“ Pacific J. Math. 209(1), 31–40 (2003).zbMATHMathSciNetGoogle Scholar
  7. 7.
    K. Iwasawa, Lectures on p-Adic L-Functions, Ann. Math. Studies 74 (Princeton University Press, Princeton, 1972).Google Scholar
  8. 8.
    L. Jang, T. Kim, and D.-W. Park, “Kummer Congruence for the Bernoulli Numbers of Higher Order,“ Appl. Math. Comput. 151, 589–593 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    T. Kim, “On p-Adic q-L-Functions and Sums of Powers,” Discrete Math. 252, 179–187 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Kim, “q-Volkenborn Integration,” Russ. J. Math. Phys. 9(3), 288–299 (2002).zbMATHMathSciNetGoogle Scholar
  11. 11.
    T. Kim, “Non-Archimedean q-Integrals Associated with Multiple Changhee q-Bernoulli Polynomials,“ Russ. J. Math. Phys. 10(1), 91–98 (2003).zbMATHADSMathSciNetGoogle Scholar
  12. 12.
    T. Kim, “On Euler-Barnes Multiple Zeta Functions,” Russ. J. Math. Phys. 10(3), 261–267 (2003).zbMATHMathSciNetGoogle Scholar
  13. 13.
    T. Kim, “Sums of Powers of Consequtive q-Integers,” Adv. Stud. Contemp. Math. 9, 15–18 (2004).zbMATHGoogle Scholar
  14. 14.
    T. Kim, “Analytic Continuation of Multiple q-Zeta Functions and Their Values at Negative Integers,“ Russ. J. Math. Phys. 11(1), 71–76 (2004).zbMATHADSMathSciNetGoogle Scholar
  15. 15.
    T. Kim, “Power Series and Asymptotic Series Associated with the q-Analog of the Two Variable p-Adic L-Function,” Russ. J. Math. Phys. 12(2), 186–196 (2005).zbMATHMathSciNetGoogle Scholar
  16. 16.
    T. Kim, “A New Approach to p-Adic q-L-Function,” Adv. Stud. Contemp. Math. 12(1), 61–72 (2006).zbMATHMathSciNetGoogle Scholar
  17. 17.
    T. Kim, “Multiple p-Adic L-Function,” Russ. J. Math. Phys. 13(2), 151–157 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    T. Kim and J.-S. Cho, “A Note on Multiple Dirichlet’s q-L-Function,” Adv. Stud. Contemp. Math. 11(1), 57–60 (2005).zbMATHMathSciNetGoogle Scholar
  19. 19.
    N. Koblitz, “A New Proof of Certain Formulas for p-Adic L-Functions,” Duke Math. J. 46(2), 455–468 (1979).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    N. Koblitz, p-Adic Analysis: A Short Course on Recent Work, London Math. Soc. Lecture Notes Ser. 46 (Cambridge University Press, Cambridge-New York, 1980).zbMATHGoogle Scholar
  21. 21.
    T. Kubota, H.-W. Leopoldt, “Eine p-adische Theorie der Zetawerte I, Einführung der p-adischen Dirichletschen L-Funktionen,” J. Reine Angew. Math., no. 214/215, 328–339 (1964).Google Scholar
  22. 22.
    C. A. Nelson and M.G. Gartley, “On the Zeros of the q-Analogue of Exponential Function,” J. Phys. A: Math. Gen. 24, 3857–3881 (1994).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    C. A. Nelson and M.G. Gartley, “On the Two q-Analogues of Logarithmic Functions: lnq(w), ln(lnq(w)),“ J. Phys. A: Math. Gen. 27, 8099–8115 (1996).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    N. Nörlund, Vorlesungen über Differenzenrechnung (Chelsea, New York, 1954).Google Scholar
  25. 25.
    K. Shiratani and S. Yamamato, “On a p-Adic Interpolation Function for the Euler Numbers and Its Derivative,” Mem. Fac. Sci. Kyushu Univ. 39, 113–125 (1985).zbMATHCrossRefGoogle Scholar
  26. 26.
    Y. Simsek, “On p-Adic Twisted q-L-Functions Related to Generalized Twisted Bernoulli Numbers,“ Russ. J. Math. Phys. 13(3), 340–348 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Y. Simsek, “On Twisted q-Hurwitz Zeta Function and q-Two-Variable L-function,” Appl. Math. Comput. 187(1), 466–473 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Y. Simsek, “Twisted p-Adic (h, q)-L-Functions“ (submitted).Google Scholar
  29. 29.
    Y. Simsek, “The Behavior of the Twisted p-Adic (h, q)-L-Functions at s = 0,” J. Korean Math. Soc. 44(4), 915–929 (2007).zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Y. Simsek, D. Kim, and S.-H. Rim, “On the Two Variable q-L-Series,” Adv. Stud. Contemp. Math. 10(2), 131–142 (2005).zbMATHMathSciNetGoogle Scholar
  31. 31.
    H.M. Srivastava, T. Kim, and Y. Simsek, “q-Bernoulli Numbers and Polynomials Associated with Multiple q-Zeta Functions and Basic L-Series,” Russ. J. Math. Phys. 12(2), 241–268 (2005).zbMATHMathSciNetGoogle Scholar
  32. 32.
    L. C. Washington, “A Note on p-Adic L-Functions,” J. Number Theory 8, 245–250 (1976).zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed. (Springer, New York, 1997).zbMATHGoogle Scholar
  34. 34.
    P. T. Young, “On the Behavior of Some Two-Variable p-Adic L-Function,” J. Number Theory 98, 67–86 (2003).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Department of MathematicsAkdeniz UniversityAntalyaTurkey

Personalised recommendations