## Preview

Unable to display preview. Download preview PDF.

### V. A. Geyler — List of Publications

- 1.“Functors Defined by Reflexive
*K*-Spaces,” Dokl. AN SSSR**188**, 17–19 (1969) [Sov. Math. Doklady**10**, 1052–1055 (1969)].Google Scholar - 2.“On Continuous Selections in Uniform Spaces,” Dokl. AN SSSR
**195**, 17–19 (1970) [Sov. Math. Doklady**11**, 1400–1402 (1969)].Google Scholar - 3.“Some Ordered Uniform Spaces of Functions,” Sibirsk. Mat. Zh.
**11**, 782–792 (1970) [Siberian Math. J.**11**, 592–599 (1970)].Google Scholar - 4.“On the Completeness of Quotient Groups,” Vestnik Moskov. Univ. Ser. I Mat. Mekh.
**5**, 32–33 (1971); P. S. Kenderov, co-author.MathSciNetGoogle Scholar - 5.“Order and Disjoint Completeness of Linear Partially Ordered Spaces,” Sibirsk. Mat. Zh.
**13**, 43–51 (1972) [Siberian Math. J.**13**, 30–35 (1972)]; A. I. Veksler, co-author.MathSciNetGoogle Scholar - 6.“Projective Objects in the Category of Locally Convex Spaces,” Funktsional. Anal. i Prilozhen.
**6**(2), 79–80 (1972) [Funct. Anal. Appl.**6**, 149–150 (1972)].Google Scholar - 7.“The Connection between Relatively Uniform Convergence and the Normality of a Cone in an Ordered Vector Space,” Optimization
**12**, 29–33 (1973).Google Scholar - 8.“Bornological Methods in Ordered Topological Vector Spaces,” Sibirsk. Mat. Zh.
**16**, 501–509 (1975) [Siberian Math. J.**16**, 383–389 (1975)]; I. F. Danilenko and I. I. Chuchaev, co-authors.MATHGoogle Scholar - 9.“Some Classes of Projective Locally Convex Spaces,” Izv. Vyssh. Uchebn. Zaved. Matem.
**3**, 40–42 (1978) [Sov. Math. (Iz. VUZ)**22**, 34–35 (1978)].Google Scholar - 10.“Monotone Seminorms and Regular Operators in Vector Lattices That Are Similar to Extended Ones,” Rev. Roumaine Math. Pures Appl.
**23**, 1341–1349 (1978).Google Scholar - 11.“On Extending and Lifting Continuous Linear Mappings in Topological Vector Spaces,” Studia Math.
**62**, 296–303 (1978).Google Scholar - 12.“Generalized Duality for Locally Convex Spaces,” Funktsional. Anal. i Prilozhen.
**11**, 41–50 (1978); V. B. Gisin, co-author.MATHGoogle Scholar - 13.“Weak Topology in Vector Lattices,” Izv. Vyssh. Uchebn. Zaved. Mat.
**1**, 3–14 (1979) [Sov. Math. (Iz. VUZ)**23**, 1–9 (1979)]; Yu. A. Abramovich and A. V. Bukhvalov, co-authors.MathSciNetGoogle Scholar - 14.“The General Principle of Local Reflexivity and Some of Its Applications in the Theory of Ordered Spaces,” Dokl. AN SSSR
**254**, 17–20 (1980) [Sov. Math. Doklady**22**, 288–291 (1980)]; I. I. Chuchaev, co-author.MathSciNetGoogle Scholar - 15.“Normed Lattices,” Itogi VINITI AN SSSR. Mat. Analiz
**18**, 125–184 (1980) [J. Soviet Math.**18**, 516–551 (1982)]; A. V. Bukhvalov and A. I. Veksler, co-authors.MathSciNetGoogle Scholar - 16.“On the Second Adjoint to a Summing Operator,” Izv. Vyssh. Uchebn. Zaved. Mat.
**12**, 9–14 (1982) [Sov. Math. (Iz. VUZ)**26**, 9–16 (1982)]; I. I. Chuchaev, co-author.MathSciNetGoogle Scholar - 17.“General Principle of Local Reflexivity in the Theory of Cone Duality,” Sibirsk. Mat. Zh.
**23**, 32–43 (1982) [Siberian Math. J.**23**, 24–32 (1982)]; I. I. Chuchaev, co-author.MathSciNetGoogle Scholar - 18.“On a Question of Fremlin Concerning Order Bounded and Regular Operators,” Colloq. Math.
**46**, 15–17 (1982); Yu. A. Abramovich, co-author.MathSciNetGoogle Scholar - 19.“Spaces of Measurable Vector-Functions Not Containing the Space
*l*^{1},” Mat. Zametki**34**, 427–432 (1983) [Math. Notes**34**, 698–700(1984)]; L. V. Chubarova, co-author.MathSciNetGoogle Scholar - 20.“Spectrum of the Bloch Electron in a Magnetic Field in a Two-Dimensional Lattice,” Teoret. Mat. Fiz.
**58**, 461–472 (1984) [Theoret. and Math. Phys.**58**, 1948–1958 (1984)]; V. A. Margulis, co-author.MathSciNetGoogle Scholar - 21.“Structure of the Spectrum of a Bloch Electron in a Magnetic Field in a Two-Dimensional Lattice,” Teoret. Mat. Fiz.
**61**, 140–149 (1984) [Theoret. and Math. Phys.**61**, 1049–1056 (1984)]; V. A. Margulis, co-author.MathSciNetGoogle Scholar - 22.
- 23.“On the Axiomatixs of New Geometry Textbooks,” Matem. v Shkole
**6**, 47–48 (1987); N. I. Plekhanova and A. A. Tremaskina, co-authors.Google Scholar - 24.“Anderson Localization in the Nondiscrete Maryland Model,” Teoret. Mat. Fiz.
**70**, 192–201 (1987) [Theoret. and Math. Phys.**70**, 133–140 (1987)]; V. A. Margulis, co-author.MathSciNetGoogle Scholar - 25.“Density of States of Two-Dimensional Electrons in the Presence of a Magnetic Field and a Random Potential in Exactly Solvable Models,” Zh. Eksper. Teor. Fiz.
**95**, 1134–1145 (1989) [Soviet Physics. JETP**68**, 654–660 (1989)]; V. A. Margulis, co-author.Google Scholar - 26.“The Two-Dimensional Schrödinger Operator with a Uniform Magnetic Field and Its Perturbation by Periodic Zero-Range Potentials,” Algebra i Analiz
**3**, 1–48 (1991) [St. Petersburg Math. J.**3**, 489–532 (1992)].Google Scholar - 27.“Scattering by an Isolated Impurity in a Quantum Channel in a Magnetic Field,” Pis’ma v ZhETF
**58**, 668–671 (1993) [JETP Letters**58**, 648–652 (1993)]; V. A. Margulis and I. I. Chuchaev, co-authors.ADSGoogle Scholar - 28.“Magnetic Susceptibility of a Quasi-Two-Dimensional System in a Tilted Magnetic Field,” Fiz. Tverd. Tela
**36**, 1994–2009 (1994) [Phys. Solid State**36**, 1090–1097 (1994)]; V. A. Margulis, I. I. Chuchaev, and A. G. Nesmelov, co-authors.Google Scholar - 29.“Resonant Tunnelling in Zero-Dimensional Systems: Explicitly Solvable Model,” Phys. Lett. A
**187**, 410–412 (1994); I. Yu. Popov, co-author.ADSCrossRefGoogle Scholar - 30.“The Spectrum of a Magneto-Bloch Electron in a Periodic Array of Quantum Dots: Explicitly Solvable Model,” Z. Phys. B
**93**, 437–439 (1994); I. Yu. Popov, co-author.CrossRefADSGoogle Scholar - 31.“Conductivity of an Electron Gas in a Quantizing Magnetic Field with Scattering on Point Defects,” Zh. Eksper. Teor. Fiz.
**107**, 187–195 (1995) [JETP**80**, 100–104] (1995); V. A. Margulis, I. V. Chudaev, and I. I. Chuchaev, co-authors.Google Scholar - 32.“Zero-Range Potentials and Carleman Operators,” Sibirsk. Mat. Zh.
**36**, 828–841 (1995) [Siberian Math. J.**36**, 714–726 (1995)]; V. A. Margulis, and I. I. Chuchaev, co-authors.MathSciNetGoogle Scholar - 33.“Spectrum of the Three-Dimensional Landau Operator Perturbed by a Periodic Point Potential,” Teoret. Mat. Fiz.
**103**, 283–294 (1995) [Theor. and Math. Phys.**103**, 561–569 (1995)]; V. V. Demidov, co-author.MathSciNetGoogle Scholar - 34.“Charge Carrier Scattering by Point Defects in Semiconductor Structures,” Fiz. Tverd. Tela
**37**, 837–844 (1995) [Phys. Solid State**37**, 455-458 (1995)]; V. A. Margulis and I. I. Chuchaev, co-authors.Google Scholar - 35.“One More Construction Which Is Impossible,” Amer. Math. Monthly
**102**, 632–634 (1995).Google Scholar - 36.“Group-Theoretical Analysis of Lattice Hamiltonians with a Magnetic Field,” Phys. Lett. A
**201**, 359–364 (1995); I. Yu. Popov, co-author.MATHADSMathSciNetCrossRefGoogle Scholar - 37.“Quasi-Two Dimensional Charged Particle in a Tilted Magnetic Field: Asymptotical Properties of the Spectrum,” Russ. J. Math. Phys.
**3**, 413–422 (1995); M. A. Antonets, co-author.MATHMathSciNetGoogle Scholar - 38.“Periodic Array of Quantum Dots in a Magnetic Field: Irrational Flux; Honeycomb Lattice,” Z. Phys B
**98**, 473–477 (1995); I. Yu. Popov, co-author.CrossRefADSGoogle Scholar - 39.“On Lacunae in the Spectrum of the Three-Dimensional Periodic Schrödinger Operator with a Magnetic Field,” Uspekhi Mat. Nauk
**50**(1), 195–196 (1995) [Russian Math. Surveys**50**(1), 198–199 (1995)]; V. A. Margulis and I. I. Chuchaev, co-authors.MathSciNetGoogle Scholar - 40.“Explicitly Solvable Quantum-Mechanical Models of a Charged Particle in a Magnetic Field,” Mat. Model.
**7**(5), 26–28 (1995).Google Scholar - 41.“Harmonic Oscillator with a Moving Point Perturbation,” Mat. Model.
**7**(5), 45 (1995); V. A. Margulis and I. V. Chudaev, co-authors.MATHGoogle Scholar - 42.“Spectrum Structure for the Three-Dimensional Periodic Landau Operator,” Algebra i Analiz
**8**, 100–120 (1996) [St. Petersburg Math. J.**8**, 447–462 (1997)]; V. A. Margulis and I. I. Chuchaev, co-authors.Google Scholar - 43.“Magnetic Moment of a Parabolic Quantum Well in a Perpendicular Magnetic Field,” Zh. Eksper. Teor. Fiz.
**109**, 762–773 (1996) [JETP**82**, 409–415 (1996)]; V. A. Margulis and I. V. Chudaev, co-authors.Google Scholar - 44.“Point Perturbation-Invariant Solutions of the Schrödinger Equation with a Magnetic Field,” Mat. Zametki
**60**, 768–763 (1996) [Math. Notes**60**, 575–580 (1996)]; V. A. Margulis, co-author.MathSciNetGoogle Scholar - 45.“Topological Structure of the Fiber Bundle of Fermion Eigenvectors on a Lattice in a Magnetic Field,” Pis’ma v ZhETF
**63**, 367–368 (1996) [JETP Letters**63**, 381–383(1996)]; I. Yu. Popov, co-author.ADSGoogle Scholar - 46.“Magnetic Moment of a Quasi-One-Dimensional Nanostructure in an Inclined Magnetic Field,” Pis’ma v ZhETF
**63**, 549–552 (1996) [JETP Letters**63**, 578–582 (1996)]; V. A. Margulis and O. B. Tomilin, co-authors.ADSGoogle Scholar - 47.“Ballistic Transport in Nanostructures: Explicitly Solvable Model,” Teoret. Mat. Fiz.
**107**, 12–20 (1996) [Theoret. and Math. Phys.**107**, 427–434 (1996)]; I. Yu. Popov, co-author.Google Scholar - 48.“Spectral Properties of a Charged Particle in Antidot Array: A Limiting Case of Quantum Billiard,” J. Math. Phys.
**37**, 5171–5194 (1996); B. S. Pavlov and I. Yu. Popov, co-authors.MATHADSMathSciNetCrossRefGoogle Scholar - 49.“First Chern Class of Lattice Magneto-Bloch Bundles,” Rep. Math. Phys.
**38**, 333–338 (1996).Google Scholar - 50.“On the Green Function of the Landau Operator and Its Properties Related to Point Interactions,” Z. Anal. Anwendungen
**15**, 851–863 (1996); V. V. Demidov, co-author.MATHMathSciNetGoogle Scholar - 51.“The Spectrum of a Quasi-Two-Dimensional System in a Parallel Magnetic Field,” Zh. Vychisl. Mat. Mat. Fiz.
**37**, 214–222 (1997) [Comput. Math. Math. Phys.**37**, 210–218 (1997)]; I. V. Chudaev, co-author.MATHMathSciNetGoogle Scholar - 52.“Ballistic Conductance of a Quasi-One-Dimensional Microstructure in a Parallel Magnetic Field,” Zh. Eksper. Teor. Fiz.
**111**, 2215–2225 (1997) [JETP**84**, 1209–1214 (1997)]; V. A. Margulis, co-author.Google Scholar - 53.“Structure of the Spectrum of the Schrödinger Operator with Magnetic Field in a Strip and Infinite Gap Potentials,” Mat. Sb.
**188**, 21–32 (1997) [Sb. Math.**188**, 657–669 (1997)]; M. M. Senatorov, co-author.MathSciNetGoogle Scholar - 54.“Periodic Potentials for Which All Gaps Are Nontrivial,” Funktsional. Anal. i Prilozhen.
**31**(1), 67–70 (1997) [Funct. Anal. Appl.**31**, 52–54 (1997)]; M. M. Senatorov, co-author.MathSciNetCrossRefGoogle Scholar - 55.“Specific Heat of Quasi-Two-Dimensional Systems in a Magnetic Field,” Phys. Rev. B
**55**, 2543–2548 (1997); V. A. Margulis, co-author.ADSCrossRefGoogle Scholar - 56.“Eigenvalues Imbedded in the Band Spectrum for a Periodic Array of Quantum Dots,” Rep. Math. Phys.
**39**, 275–281 (1997); I. Yu. Popov, co-author.MATHMathSciNetCrossRefGoogle Scholar - 57.“Transmission Coefficient for Ballistic Transport through Quantum Resonator,” Rep. Math. Phys.
**40**, 531–538 (1997); I. Yu. Popov and S. L. Popova, co-authors.MATHMathSciNetCrossRefADSGoogle Scholar - 58.“Hofstadter Butterfly for a Periodic Array of Quantum Dots,” in
*Integral Methods in Science and Engineering*, Ed. by C. Constanda e.a. (Addison Wesley Longman, Harlow, 1997), pp. 74–78; A. V. Popov, co-author.Google Scholar - 59.“Models of a Two-Dimensional Electron Systems in a Parallel Magnetic Field,” Mat. Model.
**9**(10), 10 (1997); M. M. Senatorov and I. V. Chudaev, co-authors.Google Scholar - 60.“Conductance of a Quantum Wire in Longitudinal Magnetic Field,” Zh. Eksper. Teor. Fiz.
**113**, 1376–1396 (1998) [JETP**86**, 751–762 (1998)]; V. A. Margulis and L. I. Filina, co-authors.Google Scholar - 61.“The Spectrum of a Periodic Array of Quantum Dots with Aharonov-Bohm Vortices,” Mat. Model.
**10**(12), 32 (1998); A. V. Popov, co-author.Google Scholar - 62.“One-Particle Spectral Problem for Superlattice with a Constant Magnetic Field,” Atti Sem. Mat. Fis. Univ. Modena
**46**, 79–124 (1998); B. S. Pavlov and I. Yu. Popov, co-authors.MATHMathSciNetGoogle Scholar - 63.“The Finite Gap Property of Periodic Point Potentials,” Uspekhi Mat. Nauk
**53**(4), 169 (1998) [Russian Math. Surveys**53**, 821 (1998)]; S. Albeverio, co-author.Google Scholar - 64.“Magnetic Moment of a Three-Dimensional Quantum Well in a Quantizing Magnetic Field,” Phys. Lett. A
**244**, 295–302 (1998); L. I. Filina, V. A. Margulis, and O. B. Tomilin, co-athors.ADSCrossRefGoogle Scholar - 65.“Solvable Model of a Double Quantum Electron Layer in a Magnetic Field,” Proc. R. Soc. Lond.
**A454**, 697–705 (1998); I. Yu. Popov, co-author.ADSGoogle Scholar - 66.“Localization in a Periodic System of the Aharonov-Bohm Rings,” Rep. Math. Phys.
**42**, 347–358 (1998); A. V. Popov, co-author.MATHMathSciNetCrossRefGoogle Scholar - 67.“Schrödinger Operators with Moving Point Perturbations and Related Solvable Models of Quantum Mechanical Systems,” Z. Anal. Anwendungen
**17**, 37–55 (1998); I. I. Chudaev, co-author.MATHMathSciNetGoogle Scholar - 68.“Magnetic Response of a Two-Dimensional Degenerate Electron Gas in Nanostructures with Cylindrical Symmetry,” Zh. Eksper. Teor. Fiz.
**115**, 1450–1462 (1999) [JETP**88**, 800–806 (1999)]; V. A. Margulis and A. V. Shorokhov, co-authors.Google Scholar - 69.“Gauge Periodic Point Perturbations on the Lobachevsky Plane,” Teoret. Mat. Fiz.
**119**, 368–380 (1999) [Theoret. and Math. Phys.**119**, 687–697 (1999)]; J. Brüning, co-author.Google Scholar - 70.“Conductance of a Quantum Wire in a Parallel Magnetic Field,” Fiz. i Tekhn. Poluprovod.
**33**, 1141–1143 (1999) [Semiconductors**33**, 1040–1042 (1999)]; V. A. Margulis, co-author.Google Scholar - 71.“Localization in a System of Bound Aharonov-Bohm Rings,” Fiz. Tverd. Tela
**41**, 910–913 (1999) [Phys. Solid State**41**, 827–829 (1999)]; I. Yu. Popov and A. V. Popov, co-authors.Google Scholar - 72.“Ballistic Transport in a Quantum Wire with a Noncircular Cross-Section,” Physica E
**4**, 128–131 (1999); V. A. Margulis, co-author.ADSCrossRefGoogle Scholar - 73.“On Fractal Structure of the Spectrum for Periodic Point Perturbations of the Schrödinger Operator with a Uniform Magnetic Field,” Operator Theory. Advances and Applications
**108**, 259–266 (1999); K. V. Pankrashkin, co-author.MathSciNetGoogle Scholar - 74.“Unsolvable Problems of Construction,” ISSEP Journal, No. 12, 115–118 (1999).Google Scholar
- 75.“Electron Transport Across a Microconstriction in an Arbitrarily Oriented Homogeneous Magnetic Field,” Zh. Eksper. Teor. Fiz.
**117**, 593–603 (2000) [JETP**90**, 517–526 (2000)]; N. G. Galkin and V. A. Margulis, co-authors.Google Scholar - 76.“Quasiballistic Electron Transport in a Three-Dimensional Microconstriction,” Zh. Eksper. Teor. Fiz.
**118**, 223–231 (2000) [JETP**91**, 197–205 (2000)]; N. G. Galkin and V. A. Margulis, co-authors.Google Scholar - 77.“Bound States in a Curved Nanostructure,” Pis’ma v ZhTF
**26**, 18–22 (2000) [Techn. Phys. Lett.**26**, 99–101 (2000)]; S. Albeverio and V. A. Margulis, co-authors.Google Scholar - 78.“Fractal Spectrum of Periodic Quantum Systems in a Magnetic Field,” Chaos Solitons Fractals
**11**, 281–288 (2000); I. Yu. Popov, A. V. Popov, and A. A. Ovechkina, co-authors.MATHMathSciNetCrossRefGoogle Scholar - 79.“The Band Structure of the General Periodic Schrödinger Operator with Point Interactions,” Comm. Math. Phys.
**210**, 29–48 (2000); S. Albeverio, co-author.MATHADSMathSciNetCrossRefGoogle Scholar - 80.“Possible Construction of a Quantum Multiplexer,” Europhys. Lett.
**52**, 196–202 (2000); B. S. Pavlov, I. Yu. Popov, and O. S. Pershenko, co-authors.ADSCrossRefGoogle Scholar - 81.“Berry Phase in Magnetic Systems with Point Perturbations,” J. Geom. Phys.
**36**, 178–197 (2000); P. Exner, co-author.MATHMathSciNetCrossRefADSGoogle Scholar - 82.“Quantization of the Conductance of a Three-Dimensional Quantum Wire in the Presence of a Magnetic Field,” Phys. Rev. B
**61**, 1716–1719 (2000); V. A. Margulis, co-author.ADSCrossRefGoogle Scholar - 83.“Magnetic Response for an Ellipsoid of Revolution in a Magnetic Field,” Phys. Rev. B
**62**, 11517–11526 (2000); D. V. Bulaev and V. A. Margulis, co-authors.ADSCrossRefGoogle Scholar - 84.“Berry Phase for a Potential Well Transported in a Homogeneous Magnetic Field,” Phys. Lett. A
**276**, 16–18 (2000); P. Exner, co-author.MATHADSMathSciNetCrossRefGoogle Scholar - 85.“The Spectrum of Periodic Point Perturbations and the Krein Resolvent Formula,” Oper. Theory Adv. Appl.
**117**, 71–86 (2000); J. Brüning, co-author.Google Scholar - 86.“Zero-Range Perturbations of the Schrödinger Operator with a Saddle-Point Potential,” in
*Stoch. Processes, Phys. Geom.: New Interplays*, Vol. II (AMS, 2000), pp. 223–232; V. A. Margulis, co-author.MathSciNetGoogle Scholar - 87.“Geometric Phase Related to Point-Interaction Transport on a Magnetic Lobachevsky Plane,” Lett. Math. Phys.
**55**, 9–16 (2001); S. Albeverio and P. Exner, co-authors.MATHMathSciNetCrossRefGoogle Scholar - 88.“Quantum Interference Rectifier,” Physica E
**9**, 631–634 (2001); I. Yu. Popov, co-author.ADSCrossRefGoogle Scholar - 89.“Hybrid Resonances in the Optical Absorption of a Three-Dimensional Anisotropic Quantum Well,” Phys. Rev. B
**63**, 245316,1–7 (2001); V. A. Margulis and A. V. Shorokhov, co-authors.ADSGoogle Scholar - 90.“Zero Modes in a Periodic System of Aharonov-Bohm Solenoids,” Pis’ma v ZhETF
**75**, 425–427 (2002) [JETP Letters**75**, 354–356 (2002)]; E. N. Grishanov, co-author.Google Scholar - 91.“Three-Terminal Quantum Switch,” Izv. Vyssh. Uchebn. Zaved. Priborostroenie
**45**(4), 44–48 (2002); B. S. Pavlov, I. Yu. Popov, O. S. Pershenko, and S. V. Frolov, co-authors.Google Scholar - 92.“Density of States for Carbon Nanotubes in the Presence of a Uniform Magnetic Field,” Fiz. Tverd. Tela
**44**, 449–451 (2002) [Phys. Solid State**44**, 467–469 (2002)]; O. G. Kostrov and V. A. Margulis, co-authors.Google Scholar - 93.“Electrodynamic Response of a Nanosphere,” Fiz. Tverd. Tela
**44**, 471–472 (2002) [Phys. Solid State**44**, 490–492 (2002)]; D. V. Bulaev and V. A. Margulis, co-authors.Google Scholar - 94.“Ballistic Conductance of a Quantum Sphere,” J. Phys. A: Math. Gen.
**35**, 4239–4247 (2002); J. Brüning, V. A. Margulis and M. A. Pyataev, co-authors.MATHADSCrossRefGoogle Scholar - 95.“Geometric Scattering on Compact Riemannian Manifolds,” Dokl. Akad. Nauk
**389**, 310–313 (2003) [Dokl. Math.**67**, 275–278 (2003)]; J. Brüning, co-author.MATHMathSciNetGoogle Scholar - 96.“Transport in the Two-Terminal Aharonov-Bohm Ring,” Zh. Tekhn. Fiz.
**73**(6), 1–8 (2003) [Techn. Phys.**48**, 661–668 (2003)]; V. V. Demidov and V. A. Margulis, co-authors.Google Scholar - 97.“Resonant Tunnelling through a Two-Dimensional Nanostructure with Connecting Leads,” Zh. Eksper. Teor. Fiz.
**124**, 851–861 (2003) [JETP**97**, 763–772 (2003)]; V. A. Margulis and M. A. Pyataev, co-authors.Google Scholar - 98.“Hall Conductivity of Minibands Lying at the Wings of Landau Levels,” Pis’ma v ZhETF
**77**, 743–746 (2003) [JETP Letters**77**, 616–618 (2003)]; J. Brüning, S. Yu. Dobrokhotov, and K. V. Pankrashkin, co-authors.Google Scholar - 99.“Scattering on Compact Manifolds with Infinitely Thin Horns,” J. Math. Phys.
**44**, 371–405 (2003); J. Brüning, co-author.MATHADSMathSciNetCrossRefGoogle Scholar - 100.“Large Gaps in Point-Coupled Periodic Systems of Manifolds,” J. Phys. A: Math. Gen.
**36**, 4875–4890 (2003); J. Brüning and P. Exner, co-authors.MATHADSCrossRefGoogle Scholar - 101.“Fermi Surfaces of Crystals in a High Magnetic Field,” Int. J. Nanosci
**2**, 603–610 (2003); J. Brüning and V. Demidov, co-authors.CrossRefGoogle Scholar - 102.“Quantum Hall Effect on the Lobachevsky Plane,” Phys. B
**337**, 180–185 (2003); D. V. Bulaev and V. A. Margulis, co-authors.ADSCrossRefGoogle Scholar - 103.“On the Pauli Operator for the Aharonov-Bohm Effect with Two Solenoids,” J. Math. Phys.
**45**, 51–75 (2004); P. Šťovíček, co-author.ADSMathSciNetCrossRefGoogle Scholar - 104.“Hofstadter Type Spectral Diagrams for the Bloch Electron in Three Dimensions,” Phys. Rev. B
**69**, 033202,1-4 (2004); J. Brüning and V. Demidov, co-authors.Google Scholar - 105.“Spectral Properties of a Short-Range Impurity in a Quantum Dot,” J. Math. Phys.
**45**, 1267–1290 (2004); J. Brüning and I. Lobanov, co-authors.MATHADSMathSciNetCrossRefGoogle Scholar - 106.“Effect of the Surface Curvature on the Magnetic Moment and Persistent Currents in Two-Dimensional Quantum Rings and Dots,” Phys. Rev.
**B69**, 195213,1–9 (2004); D. V. Bulaev and V. A. Margulis, co-authors.Google Scholar - 107.“Zero Modes in a System of Aharonov-Bohm Fluxes,” Rev. Math. Phys.
**16**, 851–907 (2004); P. Šťovíček, co-author.MathSciNetCrossRefMATHGoogle Scholar - 108.“Spectral Properties of Schrödinger Operators on Decorated Graphs,” Mat. Zametki
**77**, 932–935 (2005) [Math. Notes**77**, 858–861 (2005)]; J. Brüning and I. Lobanov, co-authors.Google Scholar - 109.“Continuity and Asymptotic Behavior of Integral Kernels Related to Schrödinger Operators on Manifolds,” Mat. Zametki
**78**, 314–316 (2005) [Math. Notes**78**, 285–288 (2005)]; J. Brüning and K. V. Pankrashkin, co-authors.Google Scholar - 110.“On the Theory of Multiple Scattering of Waves and the Optical Potential for a System of Point-Like Scatterers. An Application to the Theory of Ultracold Neutrons,” Russ. J. Math. Phys.
**12**, 157–167 (2005); J. Brüning, S. Yu. Dobrokhotov, and T. Ya. Tudorovskiy, co-authors.MATHMathSciNetGoogle Scholar - 111.“On-Diagonal Singularities of the Green Functions for Schrödinger Operators,” J. Math. Phys.
**46**, 113508, 1–16 (2005); J. Brüning and K. Pankrashkin, co-authors.CrossRefGoogle Scholar - 112.“Berry Phase for a Three-Dimensional Anisotropic Quantum Dot,” Phys. Lett. A
**335**, 1–10 (2005); A. V. Shorokhov, co-author.MATHADSMathSciNetCrossRefGoogle Scholar - 113.“Zero Modes in a System of Aharonov-Bohm Solenoids on the Lobachevsky Plane,” J. Phys. A: Math. Gen.
**39**, 1375–1384 (2006); P. Šťovíček, co-author.ADSCrossRefMATHGoogle Scholar - 114.“Magnetic Field Dependence of the Energy Gap in Nanotubes,” Fullerenes, Nanotubes, and Carbon Nanostructures
**15**, 21–27 (2007); J. Brüning, V. Demidov, and O. G. Kostrov, co-authors.CrossRefGoogle Scholar - 115.“Cantor and Band Spectra for Periodic Quantum Graphs with Magnetic Fields,” Comm. Math. Phys.
**269**, 87–105 (2007); J. Brüning and K. Pankrashkin, co-authors.MATHADSMathSciNetCrossRefGoogle Scholar - 116.“Continuity Properties of Integral Kernels Associated with Schrödinger Operators on Manifolds,” Ann. Henri Poincaré
**8**, 781–816 (2007); J. Brüning and K. Pankrashkin, co-authors.MATHCrossRefGoogle Scholar - 117.“Geometric Scattering on Compact Riemannian Manifolds and Spectral Theory of Automorphic Functions,” Prepr. mp arc/05-2; J. Brüning, co-author.Google Scholar
- 118.“Spectral Structure for a Three-Dimensional Periodic Array of Quantum Dots in a Uniform Magnetic Field,” Prepr. cond-mat/0605629; J. Brüning, V. V. Demidov, and A. V. Popov, co-authors.Google Scholar
- 119.“On the Number of Bound States for Weak Perturbations of Spin-Orbit Hamiltonians,” J. Phys. A: Math. Theor.
**40**F113–F117 (2007); J. Brüning and K. Pankrashkin, co-authors.MATHADSCrossRefGoogle Scholar - 120.“Explicit Green Functions for Spin-Orbit Hamiltonians,” J. Phys. A: Math. Theor.
**40**F697–F704 (2007); J. Brüning and K. Pankrashkin, co-authors.MATHADSCrossRefGoogle Scholar - 121.“Spectra of Self-Adjoint Extensions and Applications to Solvable Schrödinger Operators,” to appear in Rev. Math. Phys., Preprint arXiv:math-ph/0611088; J. Brüning and K. Pankrashkin, co-authors.Google Scholar
- 122.“A Quantum Dot with Impurity in the Lobachevsky Plane,” Preprint arXiv:0709.2790; P. Šťovíček and M. Tušek, co-authors.Google Scholar
- 123.“Transport Properties of Two-Arc Aharonov-Bohm Interferometers with Scattering Centers,” Russ. J. Math. Phys.
**14**(4), 417–422 (2007); J. Brüning, L.A. Chernozatonskii, and V.V. Demidov, co-authors.CrossRefMathSciNetGoogle Scholar - 124.“On the Discrete Spectrum of Spin-Orbit Hamiltonians with Singular Interactions,” Russ. J. Math. Phys.
**14**(4), 423–429 (2007); J. Brüning and K. Pankrashkin, co-authors.CrossRefMathSciNetGoogle Scholar

## Copyright information

© Pleiades Publishing, Ltd. 2007