Advertisement

Russian Journal of Mathematical Physics

, Volume 13, Issue 3, pp 293–298 | Cite as

q-Generalized Euler numbers and polynomials

Article

Abstract

Recently, B. A. Kupershmidt constructed reflection symmetries of q-Bernoulli polynomials (see [12]). In this paper, we study new q-extensions of Euler numbers and polynomials by using the method of Kupershmidt. We also investigate the properties of symmetries of these q-Euler polynomials by using q-derivatives and q-integrals.

Keywords

Euler Number Euler Polynomial Multiple Zeta Function Mixed Tate Motive Multiple Gamma Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. W. Barnes, “On the Theory of the Multiple Gamma Functions,” Trans. Cambridge Philos. Soc. 19, 374–425 (1904).zbMATHGoogle Scholar
  2. 2.
    L. Carlitz, “q-Bernoulli Numbers and Polynomials,” Duke Math. J. 15, 987–1000 (1948).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    L. Carlitz, “q-Bernoulli and Eulerian Numbers,” Trans. Amer. Math. Soc. 76, 332–350 (1954).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. S. Hegazi and M. Mansour, “A Note on q-Bernoulli Numbers and Polynomials,” J. Nonlinear Math. Phys. 13(1), 9–18 (2006).MathSciNetGoogle Scholar
  5. 5.
    T. Kim, “Non-Archimedean q-Integrals Associated with Multiple Changhee q-Bernoulli Polynomials,” Russ. J. Math. Phys. 10(1), 91–98 (2003).MathSciNetzbMATHGoogle Scholar
  6. 6.
    T. Kim, “q-Volkenborn Integration,” Russ. J. Math. Phys. 9(3), 288–299 (2002).MathSciNetzbMATHGoogle Scholar
  7. 7.
    T. Kim and S.-H. Rim, “A Note on the q-Integral and q-Series,” Adv. Stud. Contemp. Math. 2, 37–45 (2000).MathSciNetGoogle Scholar
  8. 8.
    T. Kim, “On Euler-Barnes Multiple Zeta Functions,” Russ. J. Math. Phys. 10(3), 261–267 (2003).MathSciNetzbMATHGoogle Scholar
  9. 9.
    T. Kim, “A Note on q-Zeta Functions,” in Proceedings of the 15th International Conference of the Jangjeon Mathematical Society (Hapcheon, South Korea, August 5–7, 2004), pp. 110–114.Google Scholar
  10. 10.
    T. Kim, “A New Approach to p-Adic q-L-Functions,” Adv. Stud. Contemp. Math. 12, 61–72 (2006).zbMATHGoogle Scholar
  11. 11.
    B. A. Koornwinder, “Special Functions and q-Commuting Variables,” Fields Inst. Commun. 14(2), 131–166 (1997).MathSciNetzbMATHGoogle Scholar
  12. 12.
    B. A. Kupershmidt, “Reflection Symmetries of q-Bernoulli Polynomials,” J. Nonlinear Math. Phys. 12(Suppl. 1), 412–422 (2005).MathSciNetGoogle Scholar
  13. 13.
    K. Matsumoto, “The Analytic Continuation and the Asymptotic Behaviour of Certain Multiple Zeta-Functions,” J. Number Theory 101(2), 223–243 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Nishizawa, “On a q-Analogue of the Multiple Gamma Functions,” Lett. Math. Phys. 37(2), 201–209 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    K. Ota, “On Kummer-Type Congruences for Derivatives of Barnes’ Multiple Bernoulli Polynomials,” J. Number Theory 92(1), 1–36 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. N. M. Ruijsenaars, “On Barnes’ Multiple Zeta and Gamma Functions,” Adv. Math. 156(1), 107–132 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    C. S. Ryoo, T. Kim, and R. P. Agarwal, “Exploring the Multiple Changhee q-Bernoulli Polynomials,” Int. J. Comput. Math. 82(4), 483–493 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    J. Satoh, “q-Analogue of Riemann’s ζ-Function and q-Euler Numbers,” J. Number Theory 31(3), 346–362 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Y. Simsek, T. Kim, and I.-S. Pyung, “Barnes’ Type Multiple Changhee q-Zeta Functions,” Adv. Stud. Contemp. Math. 10(2), 121–129 (2005).MathSciNetzbMATHGoogle Scholar
  20. 20.
    H. M. Srivastava, T. Kim, and Y. Simsek, “q-Bernoulli Numbers and Polynomials Associated with Multiple q-Zeta Functions and Basic L-Series,” Russ. J. Math. Phys. 12(2), 241–268 (2005).MathSciNetzbMATHGoogle Scholar
  21. 21.
    J. Thomae, “Beiträge zur Theorie der durch die Heinesche Reihe: … darstellbaren Functionen,” J. Reine Angew. Math. 70, 258–281 (1869).zbMATHGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • T. Kim
    • 1
  1. 1.Jangjeon Research Institutes for Mathematical Science and PhysicsNam-DoS. Korea

Personalised recommendations