Advertisement

Van der Waerden continuity theorem for semisimple lie groups

  • A. I. Shtern
Article

Abstract

As was proved by van der Waerden in 1933, every finite-dimensional locally bounded representation of a semisimple compact Lie group is continuous. This is the famous “van der Waerden continuity theorem,” and it motivated a vast literature. In particular, relationships between the assertion of the theorem (and of the inverse, in a sense, to this theorem) and some properties of the Bohr compactifications of topological groups were established, which led to the introduction and the study of certain classes of the so-called van der Waerden groups and algebras. Until now, after more than 70 years have passed, the van der Waerden theorem appears in monographs and surveys in diverse forms; new proofs were found and then simplified in important special cases.

In this paper, we prove that the statement of the van der Waerden theorem remains valid for all (not necessarily compact) real semisimple Lie groups, i.e., any given finite-dimensional representation of a real semisimple Lie group is continuous if and only if this representation is locally bounded.

More subtle results are also obtained. The main theorem contains several conditions equivalent to the continuity condition for a finite-dimensional representation. In particular, it is proved that every finite-dimensional representation of a real semisimple Lie group is continuous if and only if the restriction of this representation to the “compact” part, to the Abelian part, or to the nilpotent part of the Iwasawa decomposition is locally bounded, and the original van der Waerden theorem is also somewhat refined. For instance, the following assertion holds: every finite-dimensional representation of a compact semisimple Lie group is continuous if and only if the restriction of this representation to some maximal torus is locally bounded.

Keywords

Maximal Torus Commutator Subgroup Composition Series Iwasawa Decomposition Automatic Continuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. A. Adeleke, “Discontinuous Automorphisms of the Proper Calilei and Euclidean Groups,” Internat. J. Theoret. Phys. 28(4), 469–479 (1989).zbMATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    L. W. Anderson and R. P. Hunter, “On the Continuity of Certain Homomorphisms of Compact Semigroups,” Duke Math. J. 38(2), 409–414 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    L. G. Brown, “Continuity of Actions of Groups and Semigroups on Banach Spaces,” J. London Math. Soc. (2) 62(1), 107–116 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    W. W. Comfort, “Topological Groups,” in: Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984), pp. 1143–1263.Google Scholar
  5. 5.
    W. W. Comfort, D. Remus, and H. Szambien, “Extending Ring Topologies,” J. Algebra 232(1), 21–47 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    W. W. Comfort and L. C. Robertson, “Images and Quotients of SO(3, R): Remarks on a Theorem of van der Waerden,” Rocky Mountain J. Math. 17(1), 1–13 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    K. de Leeuw and I. Glicksberg, “The Decomposition of Certain Group Representations,” J. Anal. Math. 15, 135–192 (1965).zbMATHCrossRefGoogle Scholar
  8. 8.
    S. A. Gaal, Linear Analysis and Representation Theory (Springer, New York, 1973).zbMATHGoogle Scholar
  9. 9.
    M. Goto and F. D. Grosshans, Semisimple Lie Algebras, Lecture Notes in Pure and Appl. Math. 38 (Marcel Dekker, New York, 1978).zbMATHGoogle Scholar
  10. 10.
    F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications (Van Nostrand Reinhold, New York, 1969).zbMATHGoogle Scholar
  11. 11.
    J. E. Hart and K. Kunen, “Bohr Compactifications of Discrete Structures,” Fund. Math. 160(2), 101–151 (1999).MathSciNetzbMATHGoogle Scholar
  12. 12.
    J. E. Hart and K. Kunen, “Bohr Compactifications of Non-Abelian Groups,” Topology Proc. 26(2), 593–626 (2001/02).MathSciNetGoogle Scholar
  13. 13.
    J. E. Hart and K. Kunen, “Bohr Topologies and Compact Function Spaces,” Topology Appl. 125(2), 183–198 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. Helgason, Differential Geometry and Symmetric Spaces (Academic, New York, 1978).zbMATHGoogle Scholar
  15. 15.
    S. Helgason, Geometric Analysis on Symmetric Spaces (American Mathematical Society, Providence, 1994).zbMATHGoogle Scholar
  16. 16.
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I: Structure of Topological Groups, Integration Theory, Group Representations, 2nd ed., Grundlehren der Mathematischen Wissenschaften 115 (Springer, Berlin, 1979).Google Scholar
  17. 17.
    K. H. Hofmann and S. A. Morris, The Structure of Compact Groups (de Gruyter, Berlin, 1998).zbMATHGoogle Scholar
  18. 18.
    J. D. Lawson, “Intrinsic Topologies in Topological Lattices and Semilattices,” Pacific J. Math. 44, 593–602 (1973).zbMATHMathSciNetGoogle Scholar
  19. 19.
    G. Lukács, Lifted Closure Operators, arXiv preprint math.CT/0502410.Google Scholar
  20. 20.
    R. T. Moore, Measurable, Continuous and Smooth Vectors for Semi-Groups and Group Representations, Mem. Amer. Math. Soc. 78 (American Mathematical Society, Providence, 1968).Google Scholar
  21. 21.
    M. A. Naimark and A. I. Štern [Shtern], Theory of Group Representations (Springer, New York, 1982).zbMATHGoogle Scholar
  22. 22.
    A. L. Onishchik and É. B. Vinberg, Lie Groups and Algebraic Groups (Springer, Berlin, 1990).zbMATHGoogle Scholar
  23. 23.
    A. L. T. Paterson, Amenability (Amer. Math. Soc., Providence, 1988).zbMATHGoogle Scholar
  24. 24.
    A. Pillay, “An Application of Model Theory to Real and p-Adic Algebraic Groups,” J. Algebra 126(1), 139–146 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    A. I. Shtern, “Stability of Representations and Pseudocharacters,” in: Lomonosov Readings (Moscow State University, Moscow, 1983).Google Scholar
  26. 26.
    A. I. Shtern, “A Pseudocharacter That Is Determined by the Rademacher Symbol,” Uspekhi Mat. Nauk 45(3), 197–198 (1990) [Russ. Math. Surv. 45 (3), 224–226 (1990)].zbMATHMathSciNetGoogle Scholar
  27. 27.
    A. I. Shtern, “Quasireprezentations and Pseudorepresentations,” Funktsional. Anal. i Prilozhen. 25(2), 70–73 (1991).zbMATHMathSciNetGoogle Scholar
  28. 28.
    A. I. Shtern, “Quasi-Symmetry. I,” Russ. J. Math. Phys. 2(3), 353–382 (1994).zbMATHMathSciNetGoogle Scholar
  29. 29.
    A. I. Shtern, “Remarks on Pseudocharacters and the Real Continuous Bounded Cohomology of Connected Locally Compact Groups,” Ann. Global Anal. Geom. 20(3), 199–221 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. I. Shtern, “Structure Properties and the Bounded Real Continuous 2-Cohomology of Locally Compact Groups,” Funktsional. Anal. i Prilozhen. 35(4), 67–80 (2001) [Funct. Anal. Appl. 35 (4), 294–304 (2001)].zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    A. I. Shtern, “A Criterion for the Second Real Continuous Bounded Cohomology of a Locally Compact Group to Be Finite-Dimensional,” Acta Appl. Math. 68(1–3), 105–121 (2001).zbMATHMathSciNetCrossRefADSGoogle Scholar
  32. 32.
    A. I. Shtern, “Criteria for Weak and Strong Continuity of Representations of Topological Groups in Banach Spaces,” Mat. Sb. 193(9), 139–156 (2002).zbMATHMathSciNetGoogle Scholar
  33. 33.
    A. I. Shtern, “Continuity of Banach Representations in Terms of Point Variations,” Russ. J. Math. Phys. 9(2), 250–252 (2002).zbMATHMathSciNetADSGoogle Scholar
  34. 34.
    A. I. Shtern, “Continuity Criteria for Finite-Dimensional Representations of Compact Connected Groups,” Adv. Stud. Contemp. Math. (Kyungshang) 6(2), 141–156 (2003).zbMATHMathSciNetGoogle Scholar
  35. 35.
    A. I. Shtern, “Criteria for the Continuity of Finite-Dimensional Representations of Connected Locally Compact Groups,” Mat. Sb. 195(9), 145–159 (2004).zbMATHMathSciNetGoogle Scholar
  36. 36.
    A. I. Shtern, “Weak and Strong Continuity of Representations of Topologically Pseudocomplete Groups in Locally Convex Spaces,” Mat. Sb. 197(3), 188–211 (2006).MathSciNetGoogle Scholar
  37. 37.
    A. I. Shtern, “Automatic Continuity of Pseudocharacters on Hermitian Symmetric Semisimple Lie Groups,” Adv. Stud. Contemp. Math. (Kyungshang) 12(1), 1–8 (2006).zbMATHMathSciNetGoogle Scholar
  38. 38.
    A. I. Shtern, “Van der Waerden Continuity Theorem for the Poincaré Group and for Some Other Group Extensions,” Advances in Theoretical and Applied Mathematics 1 (2006, in press).Google Scholar
  39. 39.
    A. I. Shtern, “Van der Waerden’s Continuity Theorem and Mishchenko’s Conjecture for Finite-Dimensional Representations of Lie Groups,” submitted to J. Lie Theory.Google Scholar
  40. 40.
    A. I. Shtern, “Mishchenko’s Conjecture for Finite-Dimensional Representations of Lie Groups” (in preparation).Google Scholar
  41. 41.
    J. Tits, “Sur le groupe des automorphismes d’un arbre,” in: Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), (Springer, Berlin, 1970), pp. 188–211.Google Scholar
  42. 42.
    J. Tits, “Homomorphismes et automorphismes “abstraits” de groupes algébriques et arithmétiques,” in: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 (Gauthier-Villars, Paris), pp. 349–355.Google Scholar
  43. 43.
    B. L. van der Waerden, “Stetigkeitssätze für halbeinfache Liesche Gruppen,” Math. Z. 36, 780–786 (1933).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • A. I. Shtern
    • 1
  1. 1.Department of Mechanics and MathematicsMoscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations