Advertisement

Russian Journal of Nondestructive Testing

, Volume 54, Issue 9, pp 662–674 | Cite as

Comparative Analysis of Various Definitions of the Concept of Effective Atomic Number of Material of a Multicomponent Object

  • V. A. UdodEmail author
  • S. P. Osipov
  • Y. Wang
X-Ray Methods
  • 11 Downloads

Abstract

Comparative analysis is provided for various definitions of the concept of effective atomic number as applied to the material of a multicomponent object. Definitions in which radiation is and is not taken into account explicitly have been considered. Results of calculating the effective atomic numbers of various substances are presented on the basis of the definitions considered. New formal definitions are proposed for this concept when X-raying a multicomponent object with polychromatic radiation.

Keywords

multicomponent object effective atomic number inspection checks X-ray radiation radiation mass attenuation coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorshkov, V.A., Mass absorption coefficient and effective atomic number of a multicomponent object for a continuous radiation spectrum, Kontrol Diagn., 2015, no. 6, pp. 34–40.CrossRefGoogle Scholar
  2. 2.
    Park, J.S. and Kim, J.K., Calculation of the effective atomic number and normal density using a source-weighting method in a dual energy X-ray inspection system, J. Korean Phys. Soc., 2011, vol. 59, no. 4, pp. 2709–2713.CrossRefGoogle Scholar
  3. 3.
    Alves, H., Lima, I., and Lopes, R.T., Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images, Appl. Radiat. Isot., 2014, vol. 89, pp. 6–12.CrossRefGoogle Scholar
  4. 4.
    Bonnin, A., Duvauchelle, P., Kaftandjian, V., and Ponard, P., Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography, Nucl. Instrum. Methods Phys. Res., 2014, vol. B318, pp. 223–231.CrossRefGoogle Scholar
  5. 5.
    Udod, V.A., Wang, Y., Osipov, S.P., Chakhlov, S.V., Usachev, E.Yu., Lebedev, M.B., and Temnik, A.K., Stateof-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review, Russ. J. Nondestr. Test., 2016, vol. 52, no. 9, pp. 492–503.CrossRefGoogle Scholar
  6. 6.
    Ryzhikov, V.D., Opolonin, A.D., Volkov, V.G., Lisetskaya, E.K., Galkin, S.N., and Voronkin, E.F., Threeenergy digital radiography for the separation of substances with small effective atomic numbers, Visn. Khar. Politekh. Univ., 2013, no. 34, pp. 43–51.Google Scholar
  7. 7.
    Eritenko, A.N., Tsvetyanskii, A.L., and Polev, A.A., Specific features of calculating the effective atomic number of complex media based on the attenuation of radiation of different energies, Anal. Kontrol, 2017, vol. 21, no. 2, pp. 93–102.Google Scholar
  8. 8.
    Gorshkov, V.A., Features of dual-energy X-ray densitometry of multicomponent objects, Kontrol Diagn., 2014, no. 10, pp. 25–30.CrossRefGoogle Scholar
  9. 9.
    Gorshkov, V., The effective atomic number and the mass attenuation coefficient of a multicomponent object for the continuous spectrum of the radiation, Nondestr. Test. Eval., 2016, pp. 1–11.Google Scholar
  10. 10.
    Smith, J.A., Kallman, J.S., and Martz, H.E., Jr., Case for an Improved Effective-Atomic Number for the Electronic Baggage Scanning Program, Livermore, CA: Lawrence Livermore Natl. Lab., November 21, 2011, LLNL-TRXXXXX-DRAFT.CrossRefGoogle Scholar
  11. 11.
    Heismann, B.J., Leppert, J., and Stierstorfer, K., Density and atomic number measurements with spectral x-ray attenuation method, J. Appl. Phys., 2003, vol. 94, no. 3, pp. 2073–2079.CrossRefGoogle Scholar
  12. 12.
    Kiran, K.U., Ravindraswami, K., Eshwarappa, K.M., and Somashekarappa, H.M., Effective atomic number of granite by gamma backscattering method, Proc. DAE Symp. Nucl. Phys., 2014, vol. 59, pp. 412–413.Google Scholar
  13. 13.
    Mashkovich, V.P. and Kudryavtseva, A.V., Zashchita ot ioniziruyushchikh izluchenii. Spravochnik (Protection Against Ionizing Radiation. A Handbook), Moscow: Energoatomizdat, 1995.Google Scholar
  14. 14.
    Mashkovich, V.P., Zashchita ot ionkiziruyushchikh izluchenii. Spravochnik (Protection Against Ionizing Radiation. A Handbook), Moscow: Energoatomizdat, 1982, 3rd ed.Google Scholar
  15. 15.
  16. 16.
    Gorshkov, V.A., Patent RU2558001C2. The method of two-energy estimation of the average density and effective atomic number of multicomponent materials, ZAO Res. Inst. Introscopy MNPO SPECTR, no. RU2013127768A, claimed June 06, 2013, publ. July 27, 2015.Google Scholar
  17. 17.
    Ogorodnikov, S.A., Linac-based recognition of materials in radiation customs inspection, Cand. Sci. Dissertation, St. Petersburg, 2002.Google Scholar
  18. 18.
    Osipov, S.P., Udod, V.A., and Wang Y., Identification of materials in X-Ray inspections of objects by the dualenergy method, Russ. J. Nondestr. Test., 2017, vol. 53, no. 8, pp. 568–587.CrossRefGoogle Scholar
  19. 19.
    Klyuev, V.V., Sosnin, F.R., Aerts, V., et al., Rentgenotekhnika. Spravochnik v 2 kn. Kn. 1 (X-Ray Engineering. A Reference Book. In 2 Books. Book 1), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 1992, 2nd ed.Google Scholar
  20. 20.
    Evstrop’ev, K.S., Khimiya kremniya i fizicheskaya khimiya silikatov (Chemistry of Silicon and Physical Chemistry of Silicates), Moscow: Promstroiizdat, 1956.Google Scholar
  21. 21.
    Taylor, M.L., Smith, R.L., Dossing, F., and Franich, R.D., Robust calculation of effective atomic numbers: The Auto-Zeff software, Med. Phys., 2012, vol. 39, pp. 1769–1778.CrossRefGoogle Scholar
  22. 22.
    Ying, Zh., Naidu, R., Carl, R., and Crawford, C.R., Dual energy computed tomography for explosive detection, J. X-Ray Sci. Technol., 2006, vol. 10187, pp. 235–256.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations