Advertisement

Russian Journal of Nondestructive Testing

, Volume 54, Issue 9, pp 648–653 | Cite as

Effect of Plastic Deformation on the Magnetic Properties of Rapid-Quenched Cobalt-Based Metal Wires

  • A. A. Gavrilyuk
  • N. V. Morozova
  • A. L. Semenov
  • I. L. Morozov
  • A. V. Gavrilyuk
  • E. A. Golygin
  • S. M. ZubritskiiEmail author
  • V. I. Kokorin
Electromagnetic Methods
  • 6 Downloads

Abstract

The effect of plastic deformation on the magnetic parameters of rapid-quenched nanostructured Co66Fe4Nb2.5Si12.5B15 wires was established for the first time, as well as their sensitivity to tensile stresses. Plastic deformation changes magnetic anisotropy induced by the rapid quenching of cobalt-based metal wires, and, as a consequence, determines their magnetic parameters. Remanence is a characteristic that is most sensitive to plastic deformation. A conclusion is drawn that plastic deformation of wires leads to an increase in magnetostriction constant.

Keywords

rapid-quenched nanostructured wires plastic deformation magnetic permeability remanence magnetostriction magnetic anisotropy magnetization processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glezer, A.M., Creation principles of new-generation multifunctional structural materials, Phys.-Usp., 2012, vol. 55, no. 5, pp. 522–529.CrossRefGoogle Scholar
  2. 2.
    Andrievski, R.A. and Glezer, A.M., Strength of nanostructures, Phys.-Usp., 2009, vol. 52, no. 4, pp. 315–334.CrossRefGoogle Scholar
  3. 3.
    Kuleev, V.G., Evaluation of the relative quantity of residually compressed grains in steels after their plastic extension on the basis of remanent magnetization, Russ. J. Nondestr. Test., 2011, vol. 47, no. 7, pp. 438–445.CrossRefGoogle Scholar
  4. 4.
    Semirov, A.V., Kudryavtsev, V.O., Moiseev, A.A., Bukreev, D.A., Kovaleva, N.P., and Vasyukhno, N.V., Highfrequency electrical properties of an amorphous cobalt-based soft magnetic wire annealed by a constant electric current, Izv. VUZov, Chern. Metall., 2013, no. 12, pp. 46–50.Google Scholar
  5. 5.
    Semirov A.V., Gavriliuk A.A., Kudryavzev V.O., Moiseev A.A., and Bukreev D.A., Temperature influence on the field of impedance of amorphous CoFeNbSiB wires, J. Phys. Conf. Ser., 2008, vol. 98, p. 062005.CrossRefGoogle Scholar
  6. 6.
    Turik, N.V., Dynamic magnetic and magnetoelastic properties of amorphous metallic wires of composition Fe75Si10B15 and tapes of composition Fe64Co21B15, Cand. Sci. (Phys.-Math.) Dissertation, Irkutsk: Irkutsk State Univ., 2009.Google Scholar
  7. 7.
    Bordin, G., Buttino, G., and Poppi, M., Bending effects and temperature of magnetic properties in Fe-rich amorphous wire, J. Magn. Magn. Mater., 2001, vol. 233, pp. 187–194.CrossRefGoogle Scholar
  8. 8.
    Gavrilyuk, A.V., Gavrilyuk, A.A., Kovaleva, N.P., Mokhovikov, A.Yu., Semenov, A.L., and Gavrilyuk, B.V., Magnetic properties of amorphous metallic wires, Phys. Metals Metallogr., 2006, vol. 101, no. 5, pp. 434–439.CrossRefGoogle Scholar
  9. 9.
    Lesnik, A.G., Navedennaya magnitnaya anizotropiya (Induced Magnetic Anisotropy), Kiev: Naukova Dumka, 1976.Google Scholar
  10. 10.
    Kobacoff, L.T., Thermal, magnetic and magnetomechanical properties of Metglass 2605 S2 and S3, IEEE Trans. Magn., 1982, vol. 53, no. 11, pp. 8098–8900.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Gavrilyuk
    • 1
  • N. V. Morozova
    • 1
  • A. L. Semenov
    • 1
  • I. L. Morozov
    • 1
  • A. V. Gavrilyuk
    • 1
  • E. A. Golygin
    • 1
  • S. M. Zubritskii
    • 1
    Email author
  • V. I. Kokorin
    • 1
  1. 1.Irkutsk State UniversityIrkutskRussia

Personalised recommendations