Advertisement

Russian Journal of Nondestructive Testing

, Volume 54, Issue 9, pp 638–647 | Cite as

Investigation of Acoustic Emission in Low-Carbon Steels during Development of Fatigue Cracks

  • D. V. Chernov
  • V. M. Matyunin
  • V. A. Barat
  • A. Yu. Marchenkov
  • S. V. Elizarov
Acoustic Methods
  • 6 Downloads

Abstract

AE control results for cyclic tests of metal samples with a notch are presented. The main stages of the fatigue crack development and standard AE parameters are matched. A criterial plane which allows to separate clusters corresponding to the stages of stable and avalanche-like defect growth has been constructed. It is shown that the boundaries of clusters remain unchanged irrespectively to the differences in the kinetics of damage development.

Keywords

acoustic emission fatigue failure criterial parameters determination of the destruction stage clusterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ivanov, V.I. and Vlasov, I.E., Metod akusticheskoi emissii (Aoustic Emission Method), vol. 7, book 1 of Nerazrushayushchii kontrol'. Spravochnik (Nondestructive testing. A Handbook), 7 vols., Klyuev, V.V., Ed., Moscow: Mashnostroenie, 2005.Google Scholar
  2. 2.
    Ivanov, V.I. and Barat, V.A., Akustiko-emissionnaya diagnostika. Spravochnik (Acoustic-Emission Diagnostics. A Handbook), Moscow: Spektr, 2017.Google Scholar
  3. 3.
    PB (Safety Rules) 03-593-03. Rules for the organization and conduct of acoustic-emission control of vessels, apparatuses, boilers, and process pipelines.Google Scholar
  4. 4.
    Chernyaeva, E.V., Galkin, D.I., Bigus, G.A., and Merson, D.L., Applying the acoustic-emission method to nondestructive testing of the state of the base metal and welded joints of pipelines operating under conditions of low-cycle fatigue, Svarka Diagn., 2010, no. 2, pp. 50–56.Google Scholar
  5. 5.
    Aleshin, N.P. and Bigus, G.A., Determining the residual service life of reservoirs and pipelines, Bezop. Tr. Promsti, 2001, no. 11, pp. 18–24.Google Scholar
  6. 6.
    Bardakov, V.V., Barat, V.A., Terent’ev, D.A., Chernov, D.V., and Osipov, K.O., Specific features of applying the method of acoustic emission in monitoring of bridge structures, Kontrol Diagn., 2016, no. 1 (211), pp. 3–39.Google Scholar
  7. 7.
    Makhutov, N.A., Vasil’ev, I.E., Ivanov, V.I., Elizarov, S.V., and Chernov, D.V., Testing by the method of the cluster analysis of arrays of acoustic emission pulses at the stages of transient processes in the formation of a bulk cone of glass granulate, Zavod. Lab., Diagn. Mater., 2016, vol. 82, no. 5, pp. 44–53.Google Scholar
  8. 8.
    Kovalev, D.N., Nefed’ev, E.Yu., and Tkachev, V.G., Acoustic-emission monitoring of steel corrugated pipe tests under cyclic and static loading, Sovrem. Mashinostr. Nauka Obraz., 2012, no. 2, pp. 382–390.Google Scholar
  9. 9.
    Chernyaeva, E.V., Galkin, D.I., Bigus, G.A., and Merson, D.L., Applying the acoustic-emission method to nondestructive testing of the state of the base metal and welded joints of pipelines operating under conditions of low-cycle fatigue, Svarka Diagn., 2010, no. 2, pp. 50–56.Google Scholar
  10. 10.
    Bashkov, O.V., Bashkova, T.I., Popkova, A.A., and Hu, M., Study of the kinetic of fatigue fracture of titanium alloys by acoustic emission, Mod. Mater. Technol., 2013, no. 1, pp. 20–25.Google Scholar
  11. 11.
    Ivanova, V.S. and Terent’ev, V.F., Priroda ustalosti metallov (The Nature of Metal Fatigue), Moscow: Metallurgiya, 1975.Google Scholar
  12. 12.
    Marfo, A., Chen, Z., and Li J., Acoustic emission analysis of fatigue crack growth in steel structures, J. Civ. Eng. Constr. Technol., 2013, vol. 4, no. 7, pp. 239–249.Google Scholar
  13. 13.
    Petersen, T.B., Processing and interpretation of acoustic emission and electron microscopy data for metal damage assessment, Cand. Sci. (Eng.) Dissertation, Moscow, 1997.Google Scholar
  14. 14.
    Koranne, A.J., Kachare, SJ.A., and Jadhav, S.A., Fatigue crack analysis using acoustic emission, Int. Res. J. Eng. Technol. (IRJET), 2017, vol. 04, no. 01, pp. 1177–1180.Google Scholar
  15. 15.
    GOST (State Standard) 25.506-85. Methods of mechanical testing of metals. Determination of cracking resistance characteristics (fracture toughness) under static loading.Google Scholar
  16. 16.
    SNiP (Building Codes and Regulations) 2.05.06-85. Trunk pipelines. A normative and technical document, Moscow, 1985.Google Scholar
  17. 17.
    Matvienko, Yu.G., Modeli i kriterii mekhaniki razrusheniya (Models and Criteria for Fracture Mechanics), Moscow: Fizmatlit, 2006.Google Scholar
  18. 18.
    Terent'ev, V.F. and Korableva, S.A., Ustalost’ metallov (Fatigue of Metals), Moscow: Nauka, 2015.Google Scholar
  19. 19.
    Parton, V.Z., Mekhanika razrusheniya. Ot teorii k praktike (Fracture Mechanics. From Theory to Practice), Moscow: Izd. LKI, 2010, 3rd ed.Google Scholar
  20. 20.
    Botvina, L.R., Damage evolution on different scale levels, Izv., Phys. Solid Earth, 2011, vol. 47, no. 10, pp. 859–873.CrossRefGoogle Scholar
  21. 21.
    Botvina, L.R., Razrushenie: kinetika, mekhanizmy, obshchie zakonomernosti (Destruction: Kinetics, Mechanisms, General Regularities), Moscow: Nauka, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. V. Chernov
    • 1
  • V. M. Matyunin
    • 1
  • V. A. Barat
    • 1
  • A. Yu. Marchenkov
    • 1
  • S. V. Elizarov
    • 2
  1. 1.National Research University “MPEI”MoscowRussia
  2. 2.LLC «INTERUNIS-IT»MoscowRussia

Personalised recommendations