Russian Journal of Nondestructive Testing

, Volume 54, Issue 8, pp 576–584 | Cite as

Determining Parameters of a Ferrofluid Based on the Temperature Dependence of Microwave Reflection Spectrum with Allowance for the Formed Agglomerates of Ferromagnetic Nanoparticles

  • T. S. BochkovaEmail author
  • S. V. Igonin
  • D. A. Usanov
  • A. É. Postelga
Electromagnetic Methods


The possibility of simultaneously determining four parameters of a ferrofluid (permittivity, the volume fraction of solid phase, loss tangent, and the diameter of ferrofluid particles) based on the temperature dependence of microwave reflection spectrum has been investigated. It has been shown that taking the dimensions and spatial arrangement of magnetite-nanoparticle agglomerates into account improves the accuracy of determining the parameters.


ferrofluid structural organization of ferromagnetic nanoparticles microwave radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vales-Prinzon, C., Alvarado-Gil, J.J., Medina-Esquivel, R., and Martinez-Tores, P., Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field, J. Magn. Magnet. Mater., 2014, vol. 369, pp. 114–121.CrossRefGoogle Scholar
  2. 2.
    Ivanov, A.S., Temperature dependence of the magneto-controllable first-order phase transition in dilute magnetic fluids, J. Magn. Magnet. Mater., 2017, vol. 441, pp. 620–627.CrossRefGoogle Scholar
  3. 3.
    Chekanov, V.V., Khalupovskii, M.D., Chuenkova, I.Yu., and Malyutin, V.V., Drop shape and interfacial tension for a magnetic liquid in a homogeneous magnetic field, Magnetohydrodynamics, 1988, vol. 24, pp. 372–375.Google Scholar
  4. 4.
    Hayes, C.F., Observation association in colloid ferromagnetic, J. Coll. Int. Sci., 1975, vol. 52, pp. 239–243. doi 10.1016/0021-9797(75)90194-0CrossRefGoogle Scholar
  5. 5.
    Peterson, S.A. and Krueger, A.A., Reversible field induced agglomeration in magnetic colloid, J. Coll. Int. Sci., 1977, vol. 62, pp. 24–34. doi (77) 90061–3 doi 10.1016/0021-9797CrossRefGoogle Scholar
  6. 6.
    Ivanov, A.S. and Pshenichnikov, A.F., Vortex flow induced by drop-like aggregate drift in magnetic fluids, Phys. Fluids, 2014, vol. 26, p. 012002.CrossRefGoogle Scholar
  7. 7.
    Ivanov, A.S., Phase in bidisperse ferrocolloid, J. Magn. Magnet. Mater., 1996, vol. 154, p.66.CrossRefGoogle Scholar
  8. 8.
    Pshenichnikov, A.F. and Ivanov, A.S., Magnetophoresis of particles and aggregates in concentrated magnetic fluids, Phys. Rev. E, 2012, vol. 86, p. 051401.CrossRefGoogle Scholar
  9. 9.
    Rayker, Yu.L. and Shliomis, M.I., To the theory of the dispersion of the magnetic susceptibility of small ferromagnetic particles, Zh. Eksp. Teor. Fiz., 1974, vol. 67, pp. 1060–1073.Google Scholar
  10. 10.
    Zubarev, A.Yu. and Iskakova, L.Yu., Structural transformations in magnetic suspensions, Colloid J., 2009, vol. 71, no. 4, pp. 492–496.CrossRefGoogle Scholar
  11. 11.
    Bossis, G., Iskakova, L., Kostenko, V., and Zubarev, A., Kinetics aggregation of magnetic suspensions, Physica A, vol. 390, no. 14, pp. 2655–2663.Google Scholar
  12. 12.
    Gekht, R.C., Ignatchenko, V.A., Raikher, Yu.L., and Shliomis, M.I., Magnetic resonance in an isotropic superparamagnet, Zh. Eksp. Teor. Fiz., 1976, vol. 70, pp. 1300–1311.Google Scholar
  13. 13.
    Usanov, D.A., Skripal, Al.V., Skripal, An.V., Postelga, A.É., Raikher, Yu.L., and Stepanov, V.I., Temperature dependence of the coefficient of reflection of microwave radiation from a magnetic fluid layer, Tech. Phys., 2006, vol. 51, no. 11, pp. 1520–1523.CrossRefGoogle Scholar
  14. 14.
    Usanov, D.A., Skripal, Al.V., Skripal, An.V., and Kurganov, A.V., Determination of the magnetic fluid parameters from the microwave radiation reflection coefficients, Tech. Phys., 2001, vol. 46, no. 12, pp. 1514–1517.CrossRefGoogle Scholar
  15. 15.
    Fal’kwick, I., Measurement of dielectric permittivity at microwave frequencies by the method of small perturbations, Tr. Inst. Inzh. Elektron. Radiotekh., 1964, vol. 52, no. 2, p.215.Google Scholar
  16. 16.
    Osipov, V.V., Platonov, V.V., Uimin, M.A., and Podkin, A.V., Laser synthesis of magnetic iron oxide nanopowders, Tech. Phys., 2012, vol. 57, no. 4, p. 543–549.CrossRefGoogle Scholar
  17. 17.
    Bender, R., et al. Distribution functions of magnetic nanoparticles are determined by a numerical inversion method, New J. Phys., 2017, vol. 19, p. 073012.CrossRefGoogle Scholar
  18. 18.
    Berejnov, V., Raikher, Yu., Cabuil, V., Bacri, J.-C., and Perzynski, R., Synthesis of stable lyotropic ferronematics with high magnetic content, J. Colloid Interface Sci., 1998, vol. 199, pp. 215–217.CrossRefGoogle Scholar
  19. 19.
    D’yachenko, S.V. and Zhernovoi, A.I., The Langevin formula for describing the magnetization curve of a magnetic liquid, Tech. Phys., 2016, vol. 86, no. 12, pp. 1835–1837.CrossRefGoogle Scholar
  20. 20.
    Nikol’skii, V.V., Gyrotropic perturbation of a waveguide, Radiotekh. Elektron., 1957, vol. 2, no. 2, pp. 157–171.Google Scholar
  21. 21.
    Champlin, K.S. and Armstrong, D.B., Explicit forms for the conductivity and permittivity of bulk semiconductors in waveguides, Proc. IRE, 1962, vol. 50, no. 2, pp. 272–273.Google Scholar
  22. 22.
    Usanov, D.A., Skripal, A.V., Abramov, A.V., and Bogolyubov, A.S., Determination of the metal nanometer layer thickness and semiconductor conductivity in metal-semiconductor structures from electromagnetic reflection and transmission spectra, Tech. Phys., 2006, vol. 51, no. 5, pp. 644–649.CrossRefGoogle Scholar
  23. 23.
    Rosenzweig, R., Ferrogidrodinamika, Moscow: Mir, 1989, pp. 72–73 (Rosensweig, R.E., Ferrohydrodynamics, Dover Publ., 2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. S. Bochkova
    • 1
    Email author
  • S. V. Igonin
    • 1
  • D. A. Usanov
    • 1
  • A. É. Postelga
    • 1
  1. 1.Saratov State UniversitySaratovRussia

Personalised recommendations