Russian Journal of Nondestructive Testing

, Volume 54, Issue 3, pp 164–173 | Cite as

Universal Waveguide for the Acoustic-Emission Evaluation of High-Temperature Industrial Objects

  • I. A. RastegaevEmail author
  • D. L. Merson
  • A. V. Danyuk
  • M. A. Afanas’ev
  • A. K. Khrustalev
Acoustic Methods


An original waveguide design has been proposed that makes it possible to carry out acousticemission inspection, diagnostics, and monitoring of industrial objects operating at temperatures above 85°С. The waveguide ensures higher heat-dissipation characteristics, with minimum acoustic losses, than the known clamped-type waveguides. Its application involves no changes to the test object and requires no special permissions from supervising authorities. The underlying physical operating principles, specific features of embodiment, application possibilities, and results of the full cycle of research into how waveguide design features influence heat-dissipation and acoustic characteristics are described. The use of such waveguides widens the application field for the acoustic-emission method as an express technique for evaluating the technical condition of high-temperature objects both during operation and before decommissioning them for technical diagnostics with the aim to identify active (hazardous) areas and include them into the program of testing with other nondestructive methods.


acoustic emission acoustic waveguide nondestructive testing monitoring diagnostics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nosov, V.V., On the principles of optimizing the technologies of acoustic-emission strength control of industrial objects, Russ. J. Nondestr. Test., 2016, vol. 52, no. 7, pp. 386–399.CrossRefGoogle Scholar
  2. 2.
    Rastegaev, I.A., Merson, D.L., Khrustalev, A.K., Rastegaev, A.A., Zorin, P.N., Toropov, A.A., and Chugunov, A.V., Basics of effective organization of acoustic-emission evaluation, Kontrol’. Diagn., 2015, no. 12, pp. 41–49.CrossRefGoogle Scholar
  3. 3.
    Leaird, J.D., Acoustic Emission. Training Guide. How to Ensure an Accurate and Valid Acoustic Emission Test, Greensland Publishing Co., 1997, p. 168.Google Scholar
  4. 4.
    Baranov, V.M., Gritsenko, A.I., Karasevich, A.M., Kudryavtsev, E.M., Remizov, V.V., and Sarychev, G.A., Akusticheskaya diagnostika i kontrol' na predpriyatiyakh toplivno-energeticheskogo kompleksa (Acoustic Diagnostics and Testing at Fuel and Energy Industry Enterprises), Moscow: Nauka, 1998.Google Scholar
  5. 5.
    Luk’yanenko, V.A. and Grebennok, V.S., Studying the acoustic path of rod-waveguide transducers for recording acoustic emission of pipeline metal, Defektoskopiya, 1985, no. 2, pp. 87–89.Google Scholar
  6. 6.
    ISO 12716-2001. Non-destructive testing. Acoustic emission inspection. Vocabulary/Standard by International Organization for Standardization (Russian GOST (State Standard) R ISO 12716-2009).Google Scholar
  7. 7.
    Balabaev, S.M. and Ivina, N.F., Numerical analysis of dispersion relations of normal waves in a cylindrical piezoelectric waveguide, Russ. J. Nondestr. Test., 2010, vol. 46, no. 4, pp. 270–273.CrossRefGoogle Scholar
  8. 8.
    Konovalov, S.I. and Kuz’menko, A.G., The efficiency of a broadband piezoelectric transducer with allowance for losses in the piezoceramic and matching-layer materials, Russ. J. Nondestr. Test., 2013, vol. 49, no. 2, pp. 67–76.CrossRefGoogle Scholar
  9. 9.
    Balabaev, S.M. and Ivina, N.F., A three-dimensional analysis of natural vibrations of rectangular piezoelectric transducers, Russ. J. Nondestr. Test., 2014, vol. 50, no. 10, pp. 602–606.CrossRefGoogle Scholar
  10. 10.
    Budenkov, G.A. and Nedzvetskaya, O.V., Principal regularities of Pochhammer-wave interaction with defects, Russ. J. Nondestr. Test., 2004, vol. 40, no. 2, pp. 99–108.CrossRefGoogle Scholar
  11. 11.
    Budenkov, G.A., Nedzvetskaya, O.V., Zlobin, D.V., and Lebedeva, T.N., The application efficiency of rod and torsional waves for checking rod-shaped roll stock, Russ. J. Nondetsr. Test., 2004, vol. 40, no. 3, pp. 147–151.CrossRefGoogle Scholar
  12. 12.
    Murav’ev, V.V., Murav’eva, O.V., Platunov, A.V., and Zlobin, D.V., Investigations of acoustoelastic characteristics of rod waves in heat-treated steel wires using the electromagnetic-acoustic method, Russ. J. Nondestr. Test., 2012, vol. 48, no. 8, pp. 447–456.CrossRefGoogle Scholar
  13. 13.
    Ivanov, V.I. and Vlasov, I.E., Metod akusticheskoi emissii. Nerazrushayushchii kontrol'. Spravochnik. V 7 t. Pod obshch. red. V.V. Klyueva. T.7. V 2 kn. Kn 1 (Acoustic-Emission Method. Nondestructive Testing. A Handbook in 7 Vols.), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 2005, vol.2, Book 1.Google Scholar
  14. 14.
    Nuspl, S.P., Acoustic emission signal collectors. EP Patent no. 0663587, 16.12.1994.Google Scholar
  15. 15.
    Sherwin, L.H. and Gilmore, R.S., Apparatus for focusing and collimating ultrasonic waves. US Patent no. 3934460, 27.01.1976.Google Scholar
  16. 16.
    Feng, C.C., Apparatus for acoustic emission detection including a waveguide made of aluminum or beryllium oxide. US Patent no. 4510812, 16.04.1985.Google Scholar
  17. 17.
    Secoy, T.C., Acoustic emission waveguide. US Patent no. 5000045, 19.03.1991.Google Scholar
  18. 18.
    Caines, M.J., High temperature pressure coupled ultrasonic waveguide. US Patent no. 4392380, 21.01.1983.Google Scholar
  19. 19.
    Morozov, S.A., Kovtun, S.N., Uralets, A.Yu., Smirnov, V.V., and Yarovikov, V.I., RF Patent no. 94042353, 20.09.1996.Google Scholar
  20. 20.
    Songmei, Ping, Zhang, Ying, Mosun, Guang, Li, Wai, and Yan, Zhijun, Length-adjustable waveguide rod for acoustic emission testing. CN Patent no. 202471655, 03.10.2012.Google Scholar
  21. 21.
    Terhune, J.H., Ultrasonic waveguide. US Patent no. 5289436, 22.02.1994.Google Scholar
  22. 22.
    Persov, B.Z., Raschet i proektirovanie eksperimental’nykh ustanovok (Calculation and Design of Experimental Facilities), Moscow–Izhevsk: Inst. Comput. Res., 2006.Google Scholar
  23. 23.
    Vorontsov, V.B., Gorchinskii, A.V., Yanchenko, A.N., and Ardashov, M.G., The Angara-2 acoustic-emission apparatus for determination of the hydrogen content in melted aluminum cast alloys, Russ. J. Nondestr. Test., 2007, vol. 43, no. 1, pp. 39–42.CrossRefGoogle Scholar
  24. 24.
    Erofeev, V.I., Kazhaev, V.V., and Semerikova, N.P., Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineinost’ (Waves in Rods. Dispersion. Dissipation. Nonlinearity), Moscow: Fizmatlit, 2002.Google Scholar
  25. 25.
    PB 03-593-03. Pravila organizatsii i provedeniya akustiko-emissionnogo kontrolya sosudov, apparatov, kotlov i tekhnologicheskikh truboprovodov (Safety Rules 03-593-03. Rules for Organizing and Conducting Acoustic-Emission Testing of Vessels, Apparatus, Boilers, and Service Pipelines), Moscow: PIO OBT, 2003.Google Scholar
  26. 26.
    Ul’trazvuk. Malen’kaya entsiklopediya (Ultrasound. A Short Encyclopedia), Golyamina, I.P, Ed., Moscow: Sov. Entsiklopediya, 1979.Google Scholar
  27. 27.
    Karpash, O.M., Migal’, I.G., Bazhaluk, Ya.M., and Danilyak, Ya.B., Dependence of the amplitude of ultrasonic vibrations on the value of tension in mated joints, Defektoskopiya, 1982, no. 10, pp. 63–66.Google Scholar
  28. 28.
    Gumenyuk, M.N., On one method for attaining acoustic contact of ultrasonic transducers with rocks, Akust. Zh., 1963, vol. 9, no. 3, pp. 309–313.Google Scholar
  29. 29.
    Lazarev, S., Mozgovoi, A., Vinogradov, A., Lazarev, A., and Shvedov, A., Electromagnetic method of elastic wave excitation for calibration of acoustic emission sensors and apparatus, J. Acoust. Emiss., 2009, no. 27, pp. 212–223.Google Scholar
  30. 30.
    Hamstad, M., O’Gallagher, A., and Gary, J., A wavelet transform applied to acoustic emission signals: part 1: source identification, J. Acoust. Emiss., 2002, no. 20, pp. 39–61.Google Scholar
  31. 31.
    Terent’ev, D.A. and Elizarov, S.V., Wavelet analysis of AE signals in thin-walled objects, Kontrol’. Diagn., 2008, no. 7, pp. 51–54.Google Scholar
  32. 32.
    Wooh, S., Method and system for interpreting and utilizing multimode dispersive acoustic guided waves. US Patent no. 6360609, 26.03.2002.Google Scholar
  33. 33.
    Zelenyak, A.M., Hamstad, M., and Sause, M., Modeling of acoustic emission signal propagation in waveguides, Sensors, 2015, no. 15, pp. 11805–11822.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. A. Rastegaev
    • 1
    Email author
  • D. L. Merson
    • 1
  • A. V. Danyuk
    • 1
  • M. A. Afanas’ev
    • 1
  • A. K. Khrustalev
    • 1
  1. 1.Togliatti State UniversityTogliattiRussia

Personalised recommendations