Russian Journal of Nondestructive Testing

, Volume 53, Issue 11, pp 785–799 | Cite as

Physical basics of evaluating elastic characteristics of anisotropic composites by ultrasonic method

  • A. I. PotapovEmail author
  • V. E. Makhov
Acoustic Methods


As a result of analyzing the generalized Hooke law and wave equations for an anisotropic medium, computational expressions have been derived for evaluating the elastic constants of orthotropic, transversely isotropic, and isotropic media using the propagation velocities of longitudinal and shear elastic waves measured with the pulsed ultrasonic method in the corresponding directions.


Hooke law wave equation elastic constants orthotropic medium transversely isotropic medium isotropic medium longitudinal wave shear elastic wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramov, O.V. and Rozenbaum, A.N., in Prognozirovanie sostoyaniya tekhnicheskikh sistem (Forecasting the State of Technical Systems), Moscow: Nauka, 1990.Google Scholar
  2. 2.
    Makhutov, N.A. and Permyakov, V.N., in Resurs bezopasnoi ekspluatatsii sosudov i truboprovodov (Safe Operating Life of Vessels and Pipelines), Novosibirsk: Nauka, 2005.Google Scholar
  3. 3.
    Syzrantsev, V.N. and Golofast, C.L., Izmerenie tsiklicheskikh deformatsii i prognozirovanie dolgovechnosti detalei po pokazaniyam datchikov deformatsii integral’nogo tipa (Measuring Cyclic Deformations and Forecasting Endurance of Articles Based on the Readings of Integral Deformation Pickups), Novosibirsk: Nauka, 2004.Google Scholar
  4. 4.
    Potapov, A.I. and Savitskii, G.M., in Prochnost’ i deformativnost' stekloplastikov (kontrol' v konstruktsii) (Strength and Deformability of Fiberglass Plastics (In Situ Control)), Leningrad: Stroiizdat, 1973.Google Scholar
  5. 5.
    Potapov, A.I., in Nerazrushayushchii kontrol' konstruktsii iz kompozitsionnykh materialov (Nondestructive Testing of Constructions Made of Composites), Leningrad: Mashinostroenie, 1977.Google Scholar
  6. 6.
    Sborovskii, A.K., Potapov, A.I., and Polyakov, V.E., in Ul’trazvukovoi kontrol' kachestva konstruktsii (Ultrasonic Quality Control of Constructions), Leningrad: Sudostroenie, 1978.Google Scholar
  7. 7.
    Potapov, A.I., Applying pulsed low-frequency ultrasonic methods to quality control of articles made of coarsegrain materials, Defektoskopiya, 1979, no. 7, pp. 46–50.Google Scholar
  8. 8.
    Potapov, A.I., Determining the elastic modulus of a two-component heterogeneous mixture with allowance for the degree of dispersion, Mekh. Kompoz. Mater., 1981, no. 5, pp. 37–43.Google Scholar
  9. 9.
    Potapov, A.I., Forecasting hazardous damages in samples and thin-walled elements of a construction subjected to cyclic loading, Defektoskopiya, 1990, no. 10, pp. 47–52.Google Scholar
  10. 10.
    Rinkevich, A.B., Smorodinskii, Ya.G., Volkova, N.N., and Zagrebin, B.N., Group velocity of ultrasound in a transversally isotropic medium, Defektoskopiya, 1994, no. 2, pp. 58–63.Google Scholar
  11. 11.
    Smorodinskii, Ya.G., in Uprugie volny i magnitoakusticheskie yavleniya v namagnichennoi transversal’no-izotropnoi srede (Elastic Waves and Magnetoacoustic Phenomena in a Magnetized Transversally Isotropic Medium), Yekaterinburg: Ural Branch, Russ. Acad. Sci., 2004.Google Scholar
  12. 12.
    Biot, M.A., Theory of propagation of elastic waves in fluid-saturated porous solid. Low-frequency range, J. Acoust. Soc. Am., 1956, vol. 28, no. 2, pp. 168–178.CrossRefGoogle Scholar
  13. 13.
    Attenborough, K., Acoustical characteristics of porous materials, Phys. Lett. A., 1982, vol. 82, pp. 179–227.Google Scholar
  14. 14.
    Frederickson, C.K., Sabatier, J.M., and Raspet, R., Acoustic characterization of rigid-frame air-filled porous media using both reflection and transmission measurement, J. Acoust. Soc. Am., 1996, vol. 99, no. 3, pp. 1326–1332.CrossRefGoogle Scholar
  15. 15.
    Stinson, M.R. and Champoux, Y., Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries, J. Acoust. Soc. Am., 1992, vol. 91, no. 2, pp. 685–695.CrossRefGoogle Scholar
  16. 16.
    Tourin, A., Derode, A., Peyre, A., and Fink, M., Transport parameters for an ultrasonic pulsed wave propagating in a multiple scattering medium, J. Acoust. Soc. Am., 2000, vol. 108, no. 2, pp. 503–512.CrossRefGoogle Scholar
  17. 17.
    Sessarego, J.-P., Sageloli, J., and Guillermin, R., Scattering by an elastic sphere embedded in an elastic isotropic medium, J. Acoust. Soc. Am., 1998, vol. 104, no. 5, pp. 2836–3844.CrossRefGoogle Scholar
  18. 18.
    Gurevich, B. and Schoenberg, M., Interface conditions for Biot’s equations of poroelasticity, J. Acoust. Soc. Am., 1999, vol. 105, no. 5, pp. 2585–2589.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.St. Petersburg Mining UniversitySt. PetersburgRussia
  2. 2.Mozhaysky Military-Space AcademySt. PetersburgRussia

Personalised recommendations