Advertisement

Russian Journal of Nondestructive Testing

, Volume 53, Issue 7, pp 520–529 | Cite as

A nondestructive method for express testing of condensed media in ecological monitoring

  • V. V. DavydovEmail author
  • N. S. Myazin
  • T. I. Davydova
Electromagnetic Methods

Abstract

A nondestructive method for express testing of the state of condensed media is considered. The method is based on the developed new design of a small-sized nuclear magnetic resonance (NMR) spectrometer. The proposed engineering solutions and techniques have made it possible to detect weak-field NMR signals from various nuclei (that have magnetic moments) in a small (less than 0.3 cm3) volume of a condensed medium. This has extended significantly the capabilities of the NMRbased nondestructive method of express testing of condensed media, especially for the purposes of ecological monitoring of hard-to-reach territories. Results of experimental research of various media are presented.

Keywords

nuclear magnetic resonance state of medium ecological monitoring express testing longitudinal T1 and transverse T2 relaxation times magnetic field signal-to-noise ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mokhd, Z.U., Vavilov, V.P., and Ariffin, A.K., Ultrasonic infrared thermography in non-destructive testing: A review, Russ. J. Nondestr. Test., 2016, vol. 52, no. 4, pp. 212–219.CrossRefGoogle Scholar
  2. 2.
    Kugushev, V.I., A method for proximate testing of railroad wheels, Russ. J. Nondestr. Test., 2012, vol. 48, no. 6, pp. 340–345.CrossRefGoogle Scholar
  3. 3.
    Vasil’ev, N.S., Golyak, I.S., Golyak, I.P., Esakov, A.A., Morozov, A.N., and Tabalin, S.E., Statistical Fourier spectrometer for express analysis of chemical substances, Prib. Tekh. Eksp., 2015, no. 1, pp. 181–185.Google Scholar
  4. 4.
    Karseev, A.Yu., Vologdin, V.A., and Davydov, V.V., Feature of nuclear magnetic resonance signal registration in weak magnetic fields for the express- control of biological solutions and liquid medium by nuclear magnetic spectroscopy method, J. Phys.: Conf. Ser., 2015, vol. 643, p. 012108.Google Scholar
  5. 5.
    Bochenin, V.I., Quantitative proximate X-ray analysis of loose raw materials based on detection of diffraction and characteristic radiation, Russ. J. Nondestr. Test., 2007, vol. 43, no. 11, pp. 770–773.CrossRefGoogle Scholar
  6. 6.
    Kotel’nikov, S.G., Paraipan, M.G., Timoshenko, G.N., and Trofimov, A.S., Portable stand-alone multisphere neutron spectrometer for measurements in field conditions, Prib. Tekh. Eksp., 2012, no. 4, pp. 104–109.Google Scholar
  7. 7.
    Sedel’nikov, Yu.E. and Fadeeva, L.Yu., The synthesized video-signal method in nondestructive testing problems, Russ. J. Nondestr. Test., 2015, vol. 51, no. 5, pp. 320–328.CrossRefGoogle Scholar
  8. 8.
    Davydov, V.V., Velichko, E.N., Dudkin, V.I., and Karseev, A.Yu., A nuclear magnetic relaxometer for express testing of the condensed medium conditions, Instrum. Exp. Tech., 2015, vol. 58, no. 2, pp. 234–238.CrossRefGoogle Scholar
  9. 9.
    Kashaev, R.S. and Gazizov, E.G., Effect of irradiation in the visual and infrared spectral regions on nuclear magnetic relaxation parameters of protons in oil products, J. Appl. Spectrosc., 2010, vol. 77, no. 3, pp. 321–328.CrossRefGoogle Scholar
  10. 10.
    Davydov, V.V., Cheremiskina, A.V., Velichko, E.N., and Karseev, A.Yu., Express-control of biological solution by portable nuclear-magnetic spectrometer, J. Phys.: Conf. Ser., 2014, vol. 541, p. 012006.Google Scholar
  11. 11.
    Arkhipov, V.V., General purpose small Fourier spectrometers: design and investigation, Instrum. Exp. Tech., 2012, vol. 55, no. 6, pp. 692–695.CrossRefGoogle Scholar
  12. 12.
    Davydova, T.I., Davydov, V.V., Glinushkin, A.P., Andreev, S.N., and Rud’, V.Yu., On the necessity for using statistical models in ecological monitoring of farmland in the express mode by the nuclear magnetic spectroscopy, Biotika, 2017, vol. 8, no. 1, pp. 37–44.Google Scholar
  13. 13.
    Filippov, A.V., Artamonova, M.N., Rudakova, M.A., Gimatdinov, R.V., and Skirda, V.D., Self-diffusion in a hyaluronic acid-albumin-water system as studied by NMR, Magn. Reson. Chem., 2012, vol. 50, no. 2, pp. 114–119.CrossRefGoogle Scholar
  14. 14.
    Vol’fgang, D., Sovremennaya lazernaya spektroskopiya (Modern Laser Spectroscopy), Moscow: Intellekt, 2014.Google Scholar
  15. 15.
    Budagovskaya, O.A. and Budagovskii, A.V., Nondestructive laser testing of fruit, Russ. J. Nondestr. Test., 2015, vol. 51, no. 4, pp. 236–244.CrossRefGoogle Scholar
  16. 16.
    Sobolev, A.S., EPR testing of the concentration of paramagnetic centers using standards, Russ. J. Nondestr. Test., 2013, vol. 49, no. 3, pp. 170–177.CrossRefGoogle Scholar
  17. 17.
    Machikhin, A.S. and Batshev, V.I., An instrument for simultaneous visual and thermal testing of microelectronic devices, Russ. J. Nondestr. Test., 2016, vol. 52, no. 2, pp. 112–117.CrossRefGoogle Scholar
  18. 18.
    Tolstorozhev, G.B., Bel’kov, M.V., Raichenok, T.F., Skornyakov, I.V., Shadyro, O.I., Brinkevich, S.D., Samovich, S.N., Bazyl’, O.K., Artyukhov, V.V., and Maier, G.V., Spectroscopic and proton-acceptor properties of biologically active molecules of benzoic acid and its derivatives, Opt. Spectrosc., 2013. vol. 115, no. 5, pp. 717–726.CrossRefGoogle Scholar
  19. 19.
    Skakovskii, E.D., Tychinskaya, L.Yu., Gaidukevich, O.A., Matveichuk, S.V., Kiselev, V.P., Lamotkin, S.A., and Vladykina, D.S., Environmental monitoring based on NMR analysis of the composition of essential oil from Canadian spruce needles, J. Appl. Spectrosc., 2012, vol. 79, no. 3, pp. 465–470.CrossRefGoogle Scholar
  20. 20.
    Abragam, A., Yadernyi magnetizm (Nuclear Magnetism), Moscow: Inostr. Lit., 1963.Google Scholar
  21. 21.
    Leshe, A., Yadernaya induktsiya (Nuclear Induction), Moscow: Inostr. Lit., 1963.Google Scholar
  22. 22.
    Akhadov, Ya.Yu., Dielektricheskie parametry chistykh sred (Dielectric Parameters of Pure Media), Moscow: Moscow Aviat. Inst., 1999.Google Scholar
  23. 23.
    Davydov, V.V., Dudkin, V.I., and Karseev, A.Yu., A two-channel nutation nuclear-magnetic magnetometer for remote control of the magnetic-field induction, Instrum. Exp. Tech., 2015, vol. 58, no. 6, pp. 787–793.CrossRefGoogle Scholar
  24. 24.
    Goto, R., Matsuura, M., Sugimoto, S., Tezuka, N., Une, Y., and Sagawa, M., Microstructure evaluation for dy-free Nd-Fe-B sintered magnets with high coercivity, J. Appl. Phys., 2012, vol. 111, p. A739.Google Scholar
  25. 25.
    Kobayshi, K., Urushibata, K., Une, Y., and Sagawa, M., The origin of coercivity enhancement in newly prepared high coercivity dy-free Nd-Fe-B sintered magnets, J. Appl. Phys., 2013, vol. 113, p. 163910.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Davydov
    • 1
    • 2
    • 3
    Email author
  • N. S. Myazin
    • 1
  • T. I. Davydova
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Bonch-Bruevich St. Petersburg State University of TelecommunicationsSt. PetersburgRussia
  3. 3.Russian Research Institute of PhytopathologyMoscow oblast, Bolshie VyazemyRussia

Personalised recommendations