Pattern Recognition and Image Analysis

, Volume 28, Issue 4, pp 758–770 | Cite as

A Face Recognition Based Biometric Solution in Education

  • A. DahmouniEmail author
  • N. Aharrane
  • K. El Moutaouakil
  • K. Satori
Applied Problems


In last years, several biometric modalities are coming back into the field of education. Especially, face recognition modality that allows authenticating humans based on their facial features. The main objective of this paper is to implement the recognition system part for a global software that is intended to be used in many applications related to the educational field. Therefore, we propose to combine the face description method based on Local Gradient Probabilistic Pattern (LGPP), the two dimensional subspace methods, and machine learning classifiers. Firstly, we extract principal face component using the LGPP descriptor. Then, 2DDWT, 2DPCA, and 2DLDA subspace methods were implemented to reduce face features. Finally, support vector machine (SVM) and artificial neural network (ANN) based machine learning algorithms are applied to classify the set of the final features vectors. The experimental results on relevant databases demonstrate the effectiveness of the proposed system.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. N. Kanellopoulos, “Multimedia analysis techniques for E–learning,” Int. J. Learn. Technol. 7 (2), 172–191 (2012).CrossRefGoogle Scholar
  2. 2.
    C. Savulescu, Z. Polkowski, and A. I. Alexandru, “The online and computer aided assessment,” in Proc. 7th IEEE Int. Conf. on Electronics, Computers and Artificial Intelligence (ECAI) (Prague, 2015).Google Scholar
  3. 3.
    V. M. Patel, N. K. Ratha, and R. Chellappa, “Cancelable biometrics: a review,” IEEE Signal Processing Mag. 32 (5), 54–65 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Alhothaily, M. Alradaey, M. Oqbah, and A. El–Kustaban, “Fingerprint attendance system for educational institutes,” J. Sci. Technol. 20 (1) (2015).Google Scholar
  5. 5.
    A. K. Jain, K. Nandakumar, and A. Ross, “50 years of biometric research: accomplishments, challenges, and opportunities,” Pattern Recogn. Lett. 79, 80–105 (2016).CrossRefGoogle Scholar
  6. 6.
    O. A. Arigbabu, S. M. S. Ahmad, W. A. W. Adnan, and S. Yussof, “Integration of multiple soft biometrics for human identification,” Pattern Recogn. Lett. 68, 278–287 (2015).CrossRefGoogle Scholar
  7. 7.
    R. Suganya, S. Rajaram, S. Vishalini, R. Meena, and T. S. Kumar, “Dental image retrieval using fused local binary pattern & scale invariant feature transform,” in Advances in Signal Processing and Intelligent Recognition Systems (Springer, 2016), pp. 215–224.CrossRefGoogle Scholar
  8. 8.
    J. M. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Surf: speeded up robust features,” Comput. Vision Image Understand. 110, 346–359 (2008).CrossRefGoogle Scholar
  9. 9.
    A. Pal, N. Das, S. Sarkar, D. Gangopadhyay, and M. Nasipuri, “A new rotation invariant weber local descriptor for recognition of skin diseases,” in Proc. Conf. on Pattern Recognition and Machine Intelligence (Kolkata, 2013), pp. 355–360.CrossRefGoogle Scholar
  10. 10.
    T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture measures with classification based on featured distributions,” Pattern Recogn. 29 (1), 51–59 (1996).CrossRefGoogle Scholar
  11. 11.
    T. Ojala, M. Pietikäinen, and T. Maenpaa, “Multiresolution gray–scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intellig. 24 (7), 971–987 (2002).CrossRefzbMATHGoogle Scholar
  12. 12.
    M. Yektaii and P. Bhattacharya, “A criterion for measuring the separability of clusters and its applications to principal component analysis,” Signal, Image Video Processing 5, 93–104 (2011).CrossRefGoogle Scholar
  13. 13.
    Q. Zhu and Y. Xu, “Multi–directional two–dimensional PCA with matching score level fusion for face recognition,” Neural Computi. Appl. 23, 169–174 (2013).CrossRefGoogle Scholar
  14. 14.
    G. F. Lu, J. Zou, and Y. Wang, “A new and fast implementation of orthogonal LDA algorithm and its incremental extension,” Neural Processing Lett. 43 (3), 687–707 (2016).CrossRefGoogle Scholar
  15. 15.
    P. Forczmański and P. Łabędź, “Improving the recognition of occluded faces by means of two–dimensional orthogonal projection into local subspaces,” in Proc. Conf. on Image Analysis and Recognition (Niagara Falls, 2015), pp. 229–238.Google Scholar
  16. 16.
    Yi Lihamu and Ermaimaiti Ya, “Uyghur face recognition method combining 2DDCT with POEM,” in LIDAR Imaging Detection and Target Recognition 2017 (International Society for Optics and Photonics, 2017), Vol. 10605.Google Scholar
  17. 17.
    Z. H. Huang, W. J. Li, J. Shang, J. Wang, and T. Zhang, “Nonuniform patch based face recognition via 2DDWT,” Image Vision Comput. 37, 12–19 (2015).CrossRefGoogle Scholar
  18. 18.
    B. M. Sujatha, K. S. Babu, K. B. Raja, and K. R, Venugopal, “Hybrid domain based face recognition using DWT, FFT and compressed CLBP,” Int. J. Image Processing 9 (5), 283 (2015).Google Scholar
  19. 19.
    T. Ahonen, A. Hadid, and M. Pietikäinen, “Face description with local binary patterns application to face recognition,” IEEE Trans. Pattern Anal. Mach. Intellig. 28, 2037–2041 (2006).CrossRefzbMATHGoogle Scholar
  20. 20.
    J. Shen, W. Yang, and C. Sun, “Real–time human detection based on gentle MILBoost with variable granularity HOG–CSLBP,” Neural Comput. Appl. 23 (7–8), 1937–1948 (2013).CrossRefGoogle Scholar
  21. 21.
    Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local binary pattern operator for texture classification,” IEEE Trans. Image Process 19, 1657–1663 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    P. Yang and G. Yang, “Statistical model and local binary pattern based texture feature extraction in dualtree complex wavelet transform domain,” Multidimens. Syst. Signal Processing 29 (3), 851–865 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Dahmouni, K. El moutaouakil, and K. Satori, “Robust face recognition using Local Gradient Probabilistic Pattern (LGPP),” in Proc. MedICT2015 (Springer, 2016), pp. 277–286.Google Scholar
  24. 24.
    T. H. Le and L. Bui, “Face recognition based on SVM and 2DPCA,” Int. J. Signal Process. Image Process. Pattern Recogn. 4, 85–94 (2011).Google Scholar
  25. 25.
    Z. Cao, Q. Yin, X. Tang, and J. Sun, “Face recognition with learning–based descriptor,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (San Francisco, June 2010), pp. 2707–2714.Google Scholar
  26. 26.
    G. Guo, S. Z. Li, and K. Chan, “Face recognition by support vector machines,” Image Vision Comput. 19, 631–638 (2001).CrossRefGoogle Scholar
  27. 27.
    S. Abe, “Fusing sequential minimal optimization and Newton’s method for support vector training,” Int. J. Mach. Learn. Cybernet. 7 (3), 345–364 (2016).CrossRefGoogle Scholar
  28. 28.
    H. Boughrara, M. Chtourou, C. B. Amar, and L. Chen, “MLP neural network using modified constructive training algorithm: application to face recognition,” in Proc. 1st Int. IEEE Image Processing, Applications and Systems Conf. (IPAS) (Sfax, Nov. 2014), pp. 1–6.Google Scholar
  29. 29.
    L. E. M. López and O. J. S. Parra, “Development of an application to determine quality indexes in rivers through artificial neural networks applied to data from the Bogotá River,” Int. J. Math. Anal. 11 (21), 1041–1053 (2017).CrossRefGoogle Scholar
  30. 30.
    M. M. Kasar, D. Bhattacharyya, and T. H. Kim, “Face recognition using neural network: a review,” Int. J. Security Its Appl. 10 (3), 81–100 (2016).CrossRefGoogle Scholar
  31. 31.
    S. S. Farfade, M. J. Saberian, and L. J. Li, “Multi–view face detection using deep convolutional neural networks,” in Proc. 5th ACM Int. Conf. on Multimedia Retrieval (Shanghai, June 2015), pp. 643–650.CrossRefGoogle Scholar
  32. 32.
    X. S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in Proc. IEEE World Congress on Nature & Biologically Inspired Computing, NaBIC 2009 (Coimbatore, Dec. 2009), pp. 210–214.Google Scholar
  33. 33.
    The ORL face database at the AT&T. Cited Apr. 2015.Google Scholar
  34. 34.
    The Yale Face Database.–facedatabase. Cited Apr. 2015.Google Scholar
  35. 35.
    A. Martinez and R. Benavente, AR face database. CVC technical report 24 (1998). Visited Apr. 2016.Google Scholar
  36. 36.
    D. M. Powers, “Evaluatuion: from precision, recall and F–measure to ROC, informedness, markedness and correlation,” J. Mach. Learn. Technol. 2 (1), 37–63 (2011).MathSciNetGoogle Scholar
  37. 37.
    T. Fawcett, “An introduction to ROC analysis,” Pattern Recogn. Lett. 27 (8), 861–874 (2006).MathSciNetCrossRefGoogle Scholar
  38. 38.
    J. G. Lu, Z. Jin, and J. Zou, “Face recognition using discriminant sparsity neighborhood preserving embedding,” Knowledge–Based Syst. 31, 119–127 (2012).Google Scholar
  39. 39.
    Z. H. Huang, W.–J. Li, J. Wang, and T. Zhang, “Face recognition based on pixel–level and feature–level fusion of the top–level’s wavelet subbands,” Inf. Fusion 22, 95–104 (2015).CrossRefGoogle Scholar
  40. 40.
    H. Ren and H. Ji, “Nonparametric subspace analysis fused to 2DPCA for face recognition,” Optik–Int. J. Light Electron Opt. 125 (8), 1922–1925 (2014).CrossRefGoogle Scholar
  41. 41.
    A. Fathi, P. Alirezazadeh, and F. Abdali–Mohammadi, “A new Global–Gabor–Zernike feature descriptor and its application to face recognition,” J. Visual Commun. Image Represent. 38, 65–72 (2016).CrossRefGoogle Scholar
  42. 42.
    F. Dornaika and A. Bosaghzadeh, “Exponential local discriminant embedding and its application to face recognition,” IEEE Trans. Syst., Man, Cybernet. 43 (3), 1–14 (2012).Google Scholar
  43. 43.
    H. Yan, P. Wang, W. D. Chen, and J. Liu, “Face recognition based on gabor wavelet transform and modular 2 DPCA,” in Proc. PEEE (Hong Kong, 2015), pp. 245–248.Google Scholar
  44. 44.
    A. Mashhoori and M. Z. Jahromi, “Block–wise twodirectional 2DPCA with ensemble learning for face recognition,” Neurocomputing 108, 111–117 (2013).CrossRefGoogle Scholar
  45. 45.
    S. Du and R. K. Ward, “Improved face representation by nonuniform multilevel selection of Gabor convolution features,” IEEE Trans. Syst., Man, Cyberneti.–Part B: Cybernet. 39 (6), 1408–1419 (2009).CrossRefGoogle Scholar
  46. 46.
    A. Benzaoui, et al., “Face recognition using 1DLBP, DWT and SVM,” in Proc. 3rd IEEE Int. Conf. on Control, Engineering & Information Technology (CEIT) (Tlemcen, 2015).Google Scholar
  47. 47.
    Rai Preeti and Pritee Khanna, “An illumination, expression, and noise invariant gender classifier using two–directional 2DPCA on real Gabor space,” J. Visual Lang. Comput. 26, 15–28 (2015).CrossRefGoogle Scholar
  48. 48.
    Xia Wei, Shouyi Yin, and Peng Ouyang, “A high precision feature based on LBP and Gabor theory for face recognition,” Sensors 13.4, 4499–4513 (2013).Google Scholar
  49. 49.
    J. Wright, A.Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intellig. 31 (2), 210–227 (2009).CrossRefGoogle Scholar
  50. 50.
    W. Huang and H. Yin, “On nonlinear dimensionality reduction for face recognition,” Image Vision Comput. 30 (4), 355–366 (2012).CrossRefGoogle Scholar
  51. 51.
    O. Deniz, M. Castrillon, and M. Hernandez, “Face recognition using independent component analysis and support vector machines,” Pattern Recogn. Lett. 24, 2153–2157 (2003).CrossRefzbMATHGoogle Scholar
  52. 52.
    Tabassum Nazia and A. Tanvir, “A theoretical study on classifier ensemble methods and its applications,” in Proc. 3rd IEEE Int. Conf. on Computing for Sustainable Global Development (INDIACom) (New Delhi, 2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Dahmouni
    • 1
    Email author
  • N. Aharrane
    • 1
  • K. El Moutaouakil
    • 2
  • K. Satori
    • 1
  1. 1.LIIANDept. of Mathematics and Computer Science Faculty of Sciences Dhar-Mahraz Sidi Mohamed Ben Abdellah UniversityAtlas, FezMorocco
  2. 2.AICSMT, Polydisciplinary Faculty of NadorMohamed UniversityNadorMorocco

Personalised recommendations