Advertisement

Pattern Recognition and Image Analysis

, Volume 28, Issue 3, pp 468–482 | Cite as

Application of Superpixels to Segment Several Landmarks in Running Rodents

  • O. Haji Maghsoudi
  • A. Vahedipour
  • B. Robertson
  • A. Spence
Applied Problems
  • 9 Downloads

Abstract

Examining locomotion has improved our basic understanding of motor control and aided in treating motor impairment. Mice and rats are the model system of choice for basic neuroscience studies of human disease. High frame rates are needed to quantify the kinematics of running rodents, due to their high stride frequency. Manual tracking, especially for multiple body landmarks, becomes extremely time-consuming. To overcome these limitations, we proposed the use of superpixels based image segmentation as superpixels utilized both spatial and color information for segmentation. We segmented some parts of the body and tested the success of segmentation as a function of color space and SLIC segment size. We used a simple merging function to connect the segmented regions considered as a neighbor and having the same intensity value range. In addition, 28 features were extracted, and t-SNE was used to demonstrate how much the methods are capable to differentiate the regions. Finally, we compared the segmented regions to a manually outlined region. The results showed for segmentation, using the RGB image was slightly better compared to the hue channel. For merging and classification, however, the hue representation was better as it captures the relevant color information in a single channel.

Keywords

superpixels simple linear iterative clustering (SLIC) biomechanics color spaces rodent tracking 3D modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. B. Arnold, P. P. McVey, W. J. Farrell, T. M. Deurloo, and A. R. Grasso, “Functional electric stimulation: its efficacy and safety in improving pulmonary function and musculoskeletal fitness,” Arch. Phys. Med. Rehabil. 73 (7), 665–668 (1992).Google Scholar
  2. 2.
    S. Cirak, V. Arechavala-Gomeza, M. Guglieri, L. Feng, S. Torelli, K. Anthony, S. Abbs, M. E. Garralda, J. Bourke, D. J. Wells, et al., “Exon skipping and dystrophin restoration in patients with duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study,” Lancet 378 (9791), 595–605 (2011).CrossRefGoogle Scholar
  3. 3.
    H. M. Herr and A. M. Grabowski, “Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation,” Proc. R. Soc. B 279, 457–464 (2012).CrossRefGoogle Scholar
  4. 4.
    M. Raibert, “Alphadog, the rough-terrain robot,” in Proc. 15th Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines “Adaptive Mobile Robotics” Baltimore, July 23–26, 2012 (World Sci., 2012), p. 7.Google Scholar
  5. 5.
    K. Clarke and J. Still, “Gait analysis in the mouse,” Physiol. Behavior 66 (5), 723–729 (1999).CrossRefGoogle Scholar
  6. 6.
    G. N. Orlovski, T. Deliagina, and S. Grillner, Neuronal Control of Locomotion: from Mollusc to Man (Oxford Univ. Press, 1999).CrossRefGoogle Scholar
  7. 7.
    G. Courtine, B. Song, R. R. Roy, H. Zhong, J. E. Mann, Y. Ao, J. Qi, V. R. Edgerton, and M. V. Sofroniew, “Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury,” Nature Med. 14 (1), 69–74 (2008).CrossRefGoogle Scholar
  8. 8.
    A. A. Migliaccio, R. Meierhofer, and C. C. Della Santina, “Characterization of the 3d angular vestibuloocular reex in c57bl6 mice,” Experim. Brain Res. 210 (3–4), 489–501 (2011).CrossRefGoogle Scholar
  9. 9.
    J. F. Baker, “Dynamics and directionality of the vestibulo-collic reex (vcr) in mice,” Experim. Brain Res. 167 (1), 108–113 (2005).CrossRefGoogle Scholar
  10. 10.
    S. Revzen and J. M. Guckenheimer, “Finding the dimension of slow dynamics in a rhythmic system,” J. Roy. Soc. Interface 9 (70), 957–971 (2012).CrossRefGoogle Scholar
  11. 11.
    A. B. Wiltschko, M. J. Johnson, G. Iurilli, R. E. Peterson, J. M. Katon, S. L. Pashkovski, V. E. Abraira, R. P. Adams, and S. R. Datta, “Mapping sub-second structure in mouse behavior,” Neuron 88 (6), 1121–1135 (2015).CrossRefGoogle Scholar
  12. 12.
    T. L. Hedrick, “Software techniques for two-and threedimensional kinematic measurements of biological and biomimetic systems,” Bioinsp. Biomim. 3 (3), 034001 (2008).CrossRefGoogle Scholar
  13. 13.
    L. P. Noldus, A. J. Spink, and R. A. Tegelenbosch, “Computerised video tracking, movement analysis and behaviour recognition in insects,” Comput. Electron. Agricult. 35 (2), 201–227 (2002).CrossRefGoogle Scholar
  14. 14.
    N. Wenger, E. M. Moraud, J. Gandar, P. Musienko, M. Capogrosso, L. Baud, C. G. Le Goff, Q. Barraud, N. Pavlova, N. Dominici, et al., “Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury,” Nature Med. 22 (2), 138–145 (2016).CrossRefGoogle Scholar
  15. 15.
    C. W. Dorman, H. E. Krug, S. P. Frizelle, S. Funkenbusch, and M. L. Mahowald, “A comparison of digigait and treadscan imaging systems: assessment of pain using gait analysis in murine monoarthritis,” J. Pain Res. 7, 25 (2014).Google Scholar
  16. 16.
    K. K. Gadalla, P. D. Ross, J. S. Riddell, M. E. Bailey, and S. R. Cobb, “Gait analysis in a mecp2 knockout mouse model of rett syndrome reveals early-onset and progressive motor deficits,” PloS One 9 (11), e112,889 (2014).CrossRefGoogle Scholar
  17. 17.
    P. Huehnchen, W. Boehmerle, and M. Endres, “Assessment of paclitaxel induced sensory polyneuropathy with catwalk automated gait analysis in mice,” PloS One 8 (10), e76,772 (2013).CrossRefGoogle Scholar
  18. 18.
    F. P. Hamers, A. J. Lankhorst, T. J. van Laar, W. B. Veldhuis, and W. H. Gispen, “Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries,” J. Neurotrauma 18 (2), 187–201 (2001).CrossRefGoogle Scholar
  19. 19.
    S. S. Parvathy and W. Masocha, “Gait analysis of c57bl/6 mice with complete freund’s adjuvant-induced arthritis using the catwalk system,” BMC Musculoskeletal Disord. 14 (1), 14 (2013).CrossRefGoogle Scholar
  20. 20.
    O. H. Maghsoudi, A. V. Tabrizi, B. Robertson, P. Shamble, and A. Spence, “A novel automatic method to track the body and paws of running mice in high speed video,” in Proc. IEEE Signal Processing in Medicine and Biology Symp. (SPMB) (Philadelphia, 2015), pp. 1–2.Google Scholar
  21. 21.
    A. J. Spence, G. Nicholson-Thomas, and R. Lampe, “Closing the loop in legged neuromechanics: an opensource computer vision controlled treadmill,” J. Neurosci. Methods 215 (2), 164–169 (2013).CrossRefGoogle Scholar
  22. 22.
    W. N. Gonçalves, J. B. O. Monteiro, J. de Andrade Silva, B. B. Machado, H. Pistori, and V. Odakura, “Multiple mice tracking using a combination of particle filter and k-means,” in Proc. 20th IEEE Brazilian Symp. on Computer Graphics and Image Processing 2007 SIBGRAPI 2007 (Belo Horizonte, 2007), pp. 173–178.Google Scholar
  23. 23.
    H. Pistori, V. V. V. A. Odakura, J. B. O. Monteiro, W. N. Gonçalves, A. R. Roel, J. de Andrade Silva, and B. B. Machado, “Mice and larvae tracking using a particle filter with an auto-adjustable observation model,” Pattern Recogn. Lett. 31 (4), 337–346 (2010).CrossRefGoogle Scholar
  24. 24.
    X. Ren and J. Malik, “Learning a classification model for segmentation,” in Proc. ICCV (Nice, 2003), Vol. 1, pp. 10–17.Google Scholar
  25. 25.
    D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intellig. 24 (5), 603–619 (2002).CrossRefGoogle Scholar
  26. 26.
    P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” Int. J. Comput. Vision 59 (2), 167–181 (2004).CrossRefGoogle Scholar
  27. 27.
    A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, “Turbopixels: fast superpixels using geometric ows,” IEEE Trans. Pattern Anal. Mach. Intellig. 31 (12), 2290–2297 (2009).CrossRefGoogle Scholar
  28. 28.
    R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic superpixels compared to stateof-the-art superpixel methods,” IEEE Trans. Pattern Anal. Mach. Intellig. 34 (11), 2274–2282 (2012).CrossRefGoogle Scholar
  29. 29.
    O. Veksler, Y. Boykov, and P. Mehrani, “Superpixels and supervoxels in an energy optimization framework,” in Proc. European Conf. on Computer Vision, Ed. by K. Daniilidis, P. Maragos, and N. Paragios (Springer, 2010), pp. 211–224.Google Scholar
  30. 30.
    G. Shu, A. Dehghan, and M. Shah, “Improving an object detector and extracting regions using superpixels,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (Portland, OR, 2013), pp. 3721–3727.Google Scholar
  31. 31.
    G. Serra, M. Camurri, L. Baraldi, M. Benedetti, and R. Cucchiara, “Hand segmentation for gesture recognition in ego-vision,” in Proc. 3rd ACM Int. Workshop on Interactive Multimedia on Mobile & Portable Devices (Barcelona, 2013), pp. 31–36.CrossRefGoogle Scholar
  32. 32.
    C. Li and K. M. Kitani, “Model recommendation with virtual probes for egocentric hand detection,” in Proc. IEEE Int. Conf. on Computer Vision (Sydney, 2013), pp. 2624–2631.Google Scholar
  33. 33.
    L. Baraldi, F. Paci, G. Serra, L. Benini, and R. Cucchiara, “Gesture recognition in ego-centric videos using dense trajectories and hand segmentation,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops (Columbus, 2014), pp. 688–693.Google Scholar
  34. 34.
    C. Li and K. M. Kitani, “Pixel-level hand detection in egocentric videos,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (Portland, 2013), pp. 3570–3577.Google Scholar
  35. 35.
    L. P. Noldus, A. J. Spink, and R. A. Tegelenbosch, “Ethovision: a versatile video tracking system for automation of behavioral experiments,” Behavior Res. Methods 33 (3), 398–414 (2001).Google Scholar
  36. 36.
    A. Vedaldi and S. Soatto, “Quick shift and kernel methods for mode seeking,” in Proc. Conf. on Computer Vision ECCV 2008 (Marseille, 2008), pp. 705–718.CrossRefGoogle Scholar
  37. 37.
    O. H. Maghsoudi, M. Alizadeh, and M. Mirmomen, “A computer aided method to detect bleeding, tumor, and disease regions in wireless capsule endoscopy,” in Proc. IEEE Symp. on Signal Processing in Medicine and Biology (SPMB) (Philadelphia, 2016), pp. 1–6.Google Scholar
  38. 38.
    A. D. Straw, K. Branson, T. R. Neumann, and M. H. Dickinson, “Multi-camera real-time three-dimensional tracking of multiple flying animals,” J. Roy. Soc. Interface (2010). doi 10.1098/rsif20100230Google Scholar
  39. 39.
  40. 40.
    O. H. Maghsoudi, A. V. Tabrizi, B. Robertson, P. Shamble, and A. Spence, “A rodent paw tracker using support vector machine,” in Proc. IEEE Signal Processing in Medicine and Biology Symp. (SPMB) (Philadelphia, 2016), pp. 1–3.Google Scholar
  41. 41.
    G. Mori, X. Ren, A. A. Efros, and J. Malik, “Recovering human body configurations: combining segmentation and recognition,” in Proc. 2004 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition CVPR 2004 (Washington, 2004), Vol. 2, pp. II–II.Google Scholar
  42. 42.
    Z. Li, X. M. Wu, and S. F. Chang, “Segmentation using superpixels: a bipartite graph partitioning approach,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (Providence, 2012), pp. 789–796.Google Scholar
  43. 43.
    S. L. Phung, A. Bouzerdoum, and D. Chai, “Skin segmentation using color pixel classification: analysis and comparison,” IEEE Trans. Pattern Anal. Mach. Intellig. 27 (1), 148–154 (2005).CrossRefGoogle Scholar
  44. 44.
    F. Albregtsen, et al., Statistical Texture Measures Computed from Gray Level Coocurrence Matrices (Image Processing Lab., Dep. of Informatics, Univ. of Oslo, 2008).Google Scholar
  45. 45.
    O. H. Maghsoudi, A. V. Tabrizi, B. Robertson, and A. Spence, Superpixels based marker tracking vs. hue thresholding in rodent biomechanics application (2017). arXiv:1710.06473CrossRefGoogle Scholar
  46. 46.
    O. H. Maghsoudi, A. V. Tabrizi, B. Robertson, and A. Spence, “3d modeling of running rodents based on direct linear transform,” in Proc. IEEE Signal Processing in Medicine and Biology Symp. (SPMB) (Philadelphia, 2017), pp. 1–4.Google Scholar
  47. 47.
    S. Wilshin, G. C. Haynes, J. Porteous, D. Koditschek, S. Revzen, and A. J. Spence, “Morphology and the gradient of a symmetric potential predict gait transitions of dogs,” Biol. Cybernet. 111 (3–4), 269–277 (2017).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. Haji Maghsoudi
    • 1
  • A. Vahedipour
    • 1
  • B. Robertson
    • 1
  • A. Spence
    • 1
  1. 1.Spence Laboratory, Bioengineering, College of EngineeringTemple UniversityPhiladelphiaUSA

Personalised recommendations