Advertisement

Pattern Recognition and Image Analysis

, Volume 27, Issue 1, pp 66–81 | Cite as

Degradation adaptive texture classification for real-world application scenarios

  • M. Gadermayr
  • D. Merhof
  • A. Vécsei
  • A. Uhl
Applied Problems

Abstract

Images captured under non-laboratory conditions potentially suffer from various degradations. Especially noise, blur and scale-variations are often prevalent in real world images and are known to potentially affect the classification process of textured images. We show that these degradations not necessarily strongly affect the discriminative powers of computer based classifiers in a scenario with similar degradations in training and evaluation set. We propose a degradation-adaptive classification approach, which exploits this knowledge by dividing one large data set into several smaller ones, each containing images with some kind of degradation-similarity. In a large experimental study, it can be shown that our method continuously enhances the classification accuracies in case of simulated as well as real world image degradations. Surprisingly, by means of a pre-classification, the framework turns out to be beneficial even in case of idealistic images which are free from strong degradations.

Keywords

texture classification invariance feature extraction similarity measures robustness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’14) (Columbus, OH, 2014), pp. 3606–3613.Google Scholar
  2. 2.
    J. Sánchez, F. Perronnin, T. Mensink, and J. J. Verbeek, Int. J. Comput. Vision 105, 222 (2013).Google Scholar
  3. 3.
    H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and C. Schmid, IEEE Trans. Pattern Anal. Mach. Intellig. 34, 1704 (2012).CrossRefGoogle Scholar
  4. 4.
    R. Timofte and L. J. V. Gool, in Proc. British Machine Vision Conf. (BMVC’12) (Univ. of Surrey, Guildford, 2012), pp. 1–12.Google Scholar
  5. 5.
    G. Sharma, S. ul Hussain, and F. Jurie, in Proc. Europ. Conf. Computer Vision (ECCV’12) (Firenze, 2012), pp. 1–12.Google Scholar
  6. 6.
    F. Perronnin and C. Dance, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’07) (Minneapolis, 2007), pp. 1–8.CrossRefGoogle Scholar
  7. 7.
    H. Jegou, M. Douze, C. Schmid, and P. Perez, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’10) (San Francisco, 2010), pp. 3304–3311.CrossRefGoogle Scholar
  8. 8.
    L. Liu, P. Fieguth, G. Kuang, and H. Zha, in Proc. IEEE Int. Conf. on Computer Vision (ICCV’11) (Barcelona, 2011), pp. 391–398.Google Scholar
  9. 9.
    L. Sifre and S. Mallat, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’13) (Portland, 2013), pp. 1233–1240.Google Scholar
  10. 10.
    T. Ojala, M. Pietikäinen, and D. Harwood, Pattern Recogn. 29, 51 (1996).Google Scholar
  11. 11.
    N. Dalal and B. Triggs, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR’05) (San Diego, 2005), Vol. 1, pp. 886–893.Google Scholar
  12. 12.
    R. Rautkorpi and J. Iivarinen, in Proc. Int. Conf. on Image Analysis and Recognition (ICIAR’04) (Porto, 2004), pp. 753–760.CrossRefGoogle Scholar
  13. 13.
    J. Van De Weijer and C. Schmid, in Proc. IEEE Int. Conf. on Image Processing (ICIP’06) (Atlanta, 2006), pp. 993–996.Google Scholar
  14. 14.
    Y. Xu, H. Ji, and C. Fermüller, Int. J. Comput. Vision 83, 85 (2009).CrossRefGoogle Scholar
  15. 15.
    R. Manthalkar, P. K. Biswas, and B. N. Chatterji, Pattern Recogn. Lett. 24, 2455 (2003).Google Scholar
  16. 16.
    Q. Xu and Y. Q. Chen, in Proc. 18th IEEE Int. Conf. on Pattern Recognition (ICPR’06) (Hong Kong, 2006), Vol. 4, pp. 29–32.Google Scholar
  17. 17.
    E. H. S. Lo, M. R. Pickering, M. R. Frater, and J. F. Arnold, in Proc. IEEE Int. Conf. on Image Processing, ICIP’04 (Singapore, 2004), vol. 1, pp. 227–230.Google Scholar
  18. 18.
    J. Zhang and T. Tan, Pattern Recogn. Lett. 36, 657 (2003).Google Scholar
  19. 19.
    X. Tan and B. Triggs, in Analysis and Modelling of Faces and Gestures (2007), Vol. 4778 of LNCS, pp. 168–182.CrossRefGoogle Scholar
  20. 20.
    R. Maani, S. Kalra, and Y.-H. Yang, Pattern Recogn. 46, 2103 (2013).Google Scholar
  21. 21.
    R. Kwitt and A. Uhl, in Proc. 11th IEEE Int. Conf. on Computer Vision (ICCV’07) (Rio de Janeiro, 2007), pp. 1–8.Google Scholar
  22. 22.
    K. M. Saipullah and D.-H. Kim, Multimedia Tools Appl. 59, 717 (2012).Google Scholar
  23. 23.
    A. Vécsei, G. Amann, S. Hegenbart, M. Liedlgruber, and A. Uhl, Comput. Biol. Med. 41, 313 (2011).Google Scholar
  24. 24.
    M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and F. Wrba, in Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications, Ed. by D. F. T. P. Exarchos and A. Papadopoulos (IGI Global, Hershey, PA, 2009), pp. 335–350.Google Scholar
  25. 25.
    A. Sousa, M. Dinis-Ribeiro, M. Areia, and M. Coimbra, in Proc. 16th IEEE Int. Conf. on Image Processing (ICIP’09) (Cairo, 2009), pp. 681–684.Google Scholar
  26. 26.
    D. J. C. Barbosa, J. Ramos, and C. S. Lima, in Proc. 30th Annu. Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBS’08) (Vancouver, 2008), pp. 3012–3015.Google Scholar
  27. 27.
    S. Hegenbart, A. Uhl, and A. Vécsei, in Proc. 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA’11) (Dubrovnik, 2011), pp. 715–720.Google Scholar
  28. 28.
    S. R. Fountain and T. Tan, in Proc. IEEE Int. Conf. on Image Processing (ICIP’97) (Santa Barbara, 1997), Vol. 3, pp. 197–200.CrossRefGoogle Scholar
  29. 29.
    J. Ghosh, in Multiple Classifier Systems, edited by F. Roli and J. Kittler (Springer Berlin Heidelberg, 2002), vol. 2364 of LNCS, pp. 1–15. doi 10.1007/3- 540-45428-4_1.10.1007/3-540-45428-4_1Google Scholar
  30. 30.
    G. Giacinto and F. Roli, in Proceedings of the IEEE International Conference on Image Analysis and Processing (ICIAP’99) (1999), pp. 659–664.CrossRefGoogle Scholar
  31. 31.
    P. Aljabar, R. Heckemann, A. Hammers, J. V. Hajnal, and D. Rueckert, in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI’07) (2007), vol. 4791 of LNCS, pp. 523–531Google Scholar
  32. 32.
    K. Saenko, B. Kulis, M. Fritz, and T. Darrell, in Proceedings of the 11th European Conference on Computer Vision (ECCV’10) (2010), vol. 6314 of LNCS, pp. 213–226.Google Scholar
  33. 33.
    F. Mirrashed and M. Rastegari, in Proceedings of the IEEE International Conference on Computer Vision (ICCV’13) (2013), pp. 2608–2615.CrossRefGoogle Scholar
  34. 34.
    S. Hegenbart, A. Uhl, A. V.ecsei, and G. Wimmer, Medical Image Analysis 17, 458 (2013).Google Scholar
  35. 35.
    G. Babich and O. Camps, IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 567 (1996).CrossRefGoogle Scholar
  36. 36.
    R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, Journal of Machine Learning Research 9, 1871 (2008).Google Scholar
  37. 37.
    M. Gadermayr, S. Hegenbart, and A. Uhl, in Proceedings of 22nd IEEE International Conference on Pattern Recognition (ICPR’14) (2014).Google Scholar
  38. 38.
    M. Gadermayr and A. Uhl, in Proceedings of the IEEE International Conference on Image Processing 2014 (ICIP’14) (2014).Google Scholar
  39. 39.
    M. Gadermayr, A. Uhl, and A. V.ecsei, in Proceedings of the International Conference on Image Analysis and Recognition (ICIAR’14) (2014), vol. 8815 of Springer LNCS, pp. 263–273.Google Scholar
  40. 40.
    K. J. Dana, B. V. Ginneken, S. K. Nayar, and J. J. Koenderink, in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR’97) (San Juan, Puerto Rico, 1997), pp. 151–157.CrossRefGoogle Scholar
  41. 41.
    B. Caputo, E. Hayman, and P. Mallikarjuna, in Proceedings of the IEEE International Conference on Computer Vision (ICCV’05) (2005), vol. 2, pp. 1597–1604 Vol. 2.Google Scholar
  42. 42.
    S. Lazebnik, C. Schmid, and J. Ponce, Transactions on Pattern Analysis and Machine Intelligence 27, 1265 (2005).CrossRefGoogle Scholar
  43. 43.
    P. Marziliano, F. Dufaux, S. Winkler, T. Ebrahimi, and G. Sa, in Proceedings of the IEEE International Conference on Image Processing (ICIP’02) (2002), pp. 57–60.Google Scholar
  44. 44.
    R. M. Haralick, and K. Shanmugam, IEEE Transactions on Systems, Man, and Cybernetics 3, 610 (1973).CrossRefGoogle Scholar
  45. 45.
    M. Gadermayr, M. Liedlgruber, A. Uhl, and A. V.ecsei, Proceedings of the 9th International Conference on Image Analysis and Processing (ICIAP’13) (2013), vol. 8156 of Springer LNCS, pp. 513–522.Google Scholar
  46. 46.
    G. Kylberg, External report (Blue series) 35, Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, Uppsala, Sweden (2011), URL http://www.cb.uu.se/˜gustaf/texture/.Google Scholar
  47. 47.
    S. Hegenbart, R. Kwitt, M. Liedlgruber, A. Uhl, and A. V.ecsei, in Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis (ISPA’09) (Salzburg, Austria, 2009), pp. 718–723.Google Scholar
  48. 48.
    M. Varma and A. Zisserman, in Proceedings of the 7th European Conference on Computer Vision (ECCV’02) (Springer-Verlag, 2002), pp. 255–271.zbMATHGoogle Scholar
  49. 49.
    D. G. Lowe, in Proceedings of the Seventh IEEE International Conference on Computer Vision (CVPR’99) (IEEE, 1999), vol. 2, pp. 1150–1157.CrossRefGoogle Scholar
  50. 50.
    A. Vedaldi and B. Fulkerson, VLFeat: An open and portable library of computer vision algorithms, http://www.vlfeat.org/ (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Imaging and Computer VisionRWTH Aachen UniversityAachenGermany
  2. 2.St. Anna Children’s Hospital, Department of PediatricsMedical University ViennaViennaAustria
  3. 3.Department of Computer SciencesUniversity of SalzburgSalzburgAustria

Personalised recommendations