Advertisement

Pattern Recognition and Image Analysis

, Volume 25, Issue 3, pp 430–436 | Cite as

Facial expression analysis and the affect space

  • V. JainEmail author
  • E. Mavridou
  • J. L. Crowley
  • A. Lux
Applied Problems

Abstract

In this paper we present a technique for facial expression analysis and representing the underlying emotions in the affect space. We develop a purely appearance based approach using Multi-scale Gaussian derivatives and Support Vector Machines. The technique is validated on two different databases. The system is shown to generalize well and performs better than the baseline method.

Keywords

Automated Facial Expression Analysis Affect Recognition Multi-scale Gaussian derivatives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ekman, “An argument for basic emotions,” Cognition Emotion 6 (3–4), 169–200 (1992).CrossRefGoogle Scholar
  2. 2.
    P. Ekman and W. Friesen, Facial Action Coding System: a Technique for the Measurement of Facial Movement (Consulting Psychologists Press, Palo Alto, 1978).Google Scholar
  3. 3.
    G. Littlewort, J. Whitehill, T. Wuand, I. Fasel, M. Frank, J. Movellan, and M. Bartlett, “The computer expression recognition toolbox (cert),” in Proc. 2011 IEEE Int. Conf. on Automatic Face and Gesture Recognition (Santa Barbara, 2011), pp. 298–305.Google Scholar
  4. 4.
    Young-suk Shin, “Recognizing facial expressions with pca and ica onto dimension of the emotion,” in Proc. 2006 Joint IAPR Int. Conf. on Structural, Syntactic, and Statistical Pattern Recognition SSPR’06/SPR’06 (Springer-Verlag, Berlin, Heidelberg, 2006), pp. 916–922.Google Scholar
  5. 5.
    M. Dahmane and J. Meunier, “The computer expression recognition toolbox (cert),” in Proc. Affective Computing and Intelligent Interaction 2011 (Memphis, TN, 2011), pp. 351–358.Google Scholar
  6. 6.
    G. McKeown, M. Valstar, R. Cowie, M. Pantic, and M. Schroder, The semaine database: annotated multimodal records of emotionally colored conversations between a person and a limited agent,” IEEE Trans. Affective Comput. 3 (1), 5–17 (2012).CrossRefGoogle Scholar
  7. 7.
    J. A. Russell and A. Mehrabian, “Evidence for a threefactor theory of emotions,” J. Res. Person. 11 (3), 273–294 (1977).CrossRefGoogle Scholar
  8. 8.
    C. Becker-Asano, “WASABI: affect simulation for agents with believable interactivity,” PhD Thesis (Univ. of Bielefeld, 2008).Google Scholar
  9. 9.
    J. Cohn, T. Kanade, and Y.-L. Tian, “Comprehensive database for facial expression analysis,” in Proc. 4th IEEE Int. Conf. on Automatic Face and Gesture Recognition (Grenoble, 2000), pp. 46–53.Google Scholar
  10. 10.
    F. Wallhoff, Facial expressions and emotion database (Techn. Univ. of Munich, 2006). http:// www.mmk.ei.tum.de/ af/fgnet/feedtum.htmlGoogle Scholar
  11. 11.
    Face and gesture recognition working group. http://www prima.inrialpes.fr/FGnet/Google Scholar
  12. 12.
    J. Varun and J. L. Crowley, “Smile detection using multi-scale Gaussian derivatives,” in Proc. 12th WSEAS Int. Conf. on Signal Processing, Robotics and Automation (Cambridge, 2013), pp. 149–154.Google Scholar
  13. 13.
    T. Lindeberg, Scale-Space Theory in Computer Vision (Kluwer Acad. Press, 1994).CrossRefGoogle Scholar
  14. 14.
    D. G. Lowe, “Object recognition from local scaleinvariant features,” in Proc. Int. Conf. on Computer Vision (Kerkyra, 1999), pp. 1150–1157.Google Scholar
  15. 15.
    J. L. Crowley and O. Riff, Springer Lecture Notes on Computer Science, Vol. 2695, Chapter Fast Computation of Scale Normalized Gaussian Receptive Fields (2003), pp. 584–598.Google Scholar
  16. 16.
    I. T. Jolliffe, Principal Component Analysis (SpringerVerlag, 2002).zbMATHGoogle Scholar
  17. 17.
    V. N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998).zbMATHGoogle Scholar
  18. 18.
    C. Cortes and V. N. Vapnik, Machine Learning, Vol. 20, Chapter Support-Vector Networks (Springer, 1995), pp. 273–297.Google Scholar
  19. 19.
    P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Computer Vision, 20 (17), 137–154 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.INRIAGrenoble Rhône-Alpes Research CenterParisFrance

Personalised recommendations