Pattern Recognition and Image Analysis

, Volume 25, Issue 3, pp 389–401 | Cite as

A temporal belief-based hidden markov model for human action recognition in medical videos

  • A. S. R. M. Ahouandjinou
  • C. Motamed
  • E. C. Ezin
Applied Problems

Abstract

In the context of human action recognition from video sequences in the medical environment, a Temporal Belief-based Hidden Markov Model (HMM) is presented. It allows to cope with human action temporality and enables to manage the data uncertainty and the knowledge incompleteness. The system of activity recognition is based on an HMM with explicit state duration. The global interpretation process uses the framework of the Transferable Belief Model (TBM). It enable us to model and manage the uncertainty over the video interpretation process. An application is proposed for human action analysis in medical video sequences provided by a patient monitoring system in the cardiology section in hospital. The proposed recognition method has been assessed on a database of 3000 video images of medical scenes and compared to the performance of the probabilistic Hidden Markov Models.

Keywords

human action recognition medical videos indexing transferable belief model temporal reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ziani, C. Motamed, and J. C. Noyer, “Temporal reasoning for scenario recognition in video-surveillance using Bayesian networks,” IET Comput. Vision 2 (2), 99–107 (2008).CrossRefGoogle Scholar
  2. 2.
    A.-S. Silvent, M. Dojat, and C. Garbay, “Multi-level temporal abstraction for medical scenario construction,” Int._J. Adap. Control Signal Process 19, 377–394 (2005).MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Wilson and A. Bobick. “Hidden Markov models for modeling and recognizing gesture under variation,” Int. J. Pattern Recogn. Artificial Intellig. 15 (1), 123–160, (2001).CrossRefGoogle Scholar
  4. 4.
    E. Ramasso, “Contribution of belief functions to Hidden Markov Models,” in Proc. IEEE Workshop on Machine Learning and Signal Processing (Grenoble, 2009), pp.1–6.Google Scholar
  5. 5.
    S. Luhr, S. Venkatesh, G. West, and H. H. Bui, “Duration abnormality detection in sequences of human activity,” in Proc. PRICAI 2004: Trends in Artificial Intelligence Lecture Notes in Computer Science (2004), Vol. 3157, pp. 983–984.Google Scholar
  6. 6.
    S. Luhr, S. Venkatesh, G. West, and H. H. Bui, “Explicit state duration HMM for abnormality detection in sequences of human activity,” in Proc. PRICAI 2004: Trends in Artificial Intelligence Lecture Notes in Computer Science (2004).CrossRefGoogle Scholar
  7. 7.
    C. Tessier, “Towards a commonsense estimator for activity tracking,” in Proc. AAAI Spring Symp. (Palo Alto, CA, 2003), pp. 111–119.Google Scholar
  8. 8.
    T. Vu, F. Bremond, and M. Thonnat, “Automatic video interpretation: A novel algorithm for temporal scenario recognition,” in Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI’03) (Acapulco, 2003), pp. 9–15.Google Scholar
  9. 9.
    C. Dousson, and P. Le Maigat, “Chronicle recognition improvement using temporal focusing and hierarchization,” in Proc. IJCAI 2007 (Hyderabad, 2007), pp. 324–329.Google Scholar
  10. 10.
    A. Ziani and C. Motamed, “Automatic scenario recognition for visual-surveillance by combining probabilistic graphical approaches,” in Video Surveillance, Ed. by Weiyao Lin (InTech, 2011).Google Scholar
  11. 11.
    V. T. Vu, “Temporel scenario for automatic video interpretation,” PhD Thesis (INRIA, Sophia-Antipolis, 2004).Google Scholar
  12. 12.
    N. Rota and M. Thonnat, “Activity recognition from video sequences using declarative models,” in Proc. 14th European Conf. on Artificial Intelligence (ECAI), Ed. by W. Horn (IOS Press, Amsterdam, Berlin, 2000).Google Scholar
  13. 13.
    V.-T. Vu, F. Bremond, and M. Thonnat, “Temporal constraints for video interpretation,” in Proc. 15th European Conf. on Artificial Intelligence (ECAI’2002) (Lyon, 2002).Google Scholar
  14. 14.
    R. Gerber, H. Nagel, and H. Schreiber, “Deriving textual descriptions of road traffic queues from video sequences,” in Proc. 15th European Conf. on Artificial Intelligence (ECAI) (Lyon, 2002), pp. 736–740.Google Scholar
  15. 15.
    M. Thonnat and N. A. Rota, “Image understanding for visual surveillance applications,” in Proc. Int. Workshop on Cooperative Distributed Vision (Kyoto, 1999), pp. 51–82.Google Scholar
  16. 16.
    J. Hobbs, R. Nevatia, and B. Bolles, “An ontology for video event representation,” in Proc. IEEE Workshop on Event Detection and Recognition, WEDR’04 (Washington, 2004).Google Scholar
  17. 17.
    M. Thonnat, F. Bremond, N. Maillot, and Van Th. Vu, “Ontologies for video events,” in Tech. Rep. (INRIA, Sophia-Antipolis, 2004), No. 5189.Google Scholar
  18. 18.
    L. I. Kuncheva, “Classifier ensembles for changing environments,” in Proc. Int. Workshop on Multiple Classifier Systems (Cagliari, 2004), Vol. 3077, pp. 1–15.Google Scholar
  19. 19.
    H. H. Bui, Q. Phung, and S. Venkatesh, “Hierarchical Hidden Markov Models with general state hierarchy,” in Proc. 18th National Conf. on Artificial Intelligence, (San Jose, CA, 2004), pp. 324–329.Google Scholar
  20. 20.
    S. Hongeng; F. Bremond, and R. Nevatia, “Bayesian framework for video surveillance application,” in Proc. ICPR00 (Barcelona, 2000), pp. 164–170.Google Scholar
  21. 21.
    L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE 77, 257–285 (1989).CrossRefGoogle Scholar
  22. 22.
    A. J. Howell and H. Buxton. “Learning identity with radial basis function networks,” Neurocomputing 20, 15–34 (1998).CrossRefGoogle Scholar
  23. 23.
    K. Altun, B. Barshan, and O. Tunél, “Comparative study on classifying human activities with miniature inertial and magnetic sensors,” Pattern Recogn. 43 (10), 3605–3620 (2010).MATHCrossRefGoogle Scholar
  24. 24.
    J. He, H. Li, and J. Tan, “Real-time daily activity classification with wireless sensor networks using hidden Markov model,” in Proc. 29th Annu. Int. Conf. of the IEEE Engineering in Medicine and Biology Society (Lyon, 2007), pp. 3192–3195.Google Scholar
  25. 25.
    M. C. Yuksek and B. Barshan, “Human activity classification with miniature inertial and magnetic sensors,” in Proc. 9th European Signal Processing Conf. (Barcelona, 2011), pp. 956–960.Google Scholar
  26. 26.
    A. Sant’Anna, “A symbolic approach to human motion analysis using inertial sensors: framework and gait analysis study,” in PhD Thesis (Halmstad Univ., 2012).Google Scholar
  27. 27.
    A. J. Howell and H. Buxton, “RBF network methods for face detection and attentional frames,” Neural Processing Lett. 15 (3), 197–211 (2002).MATHCrossRefGoogle Scholar
  28. 28.
    H. Buxton and G. Shaogang, “Advanced visual surveillance using Bayesian networks,” in Proc. Int. Conf. on Computer Vision (Cambridge, MA, 1995).Google Scholar
  29. 29.
    R. J. Howarth and H. Buxton, “Conceptual descriptions from monitoring et watching image sequences,” Image Vision Comput. 18, 105–135 (2000).CrossRefGoogle Scholar
  30. 30.
    T. Tan, P. Remagnino, and K. Baker, “Agent orientated annotation in model based visual surveillance,” in Proc. Int. Conf. on Computer Vision (Bombay, 1998), pp. 857–862.Google Scholar
  31. 31.
    S. Hongeng and R. Nevatia, “Multi-agent event recognition,” in Proc. Int. Conf. on Computer Vision, ICCV’01 (Vancouver, July 2001).CrossRefGoogle Scholar
  32. 32.
    R., Nevatia, S. Hongeng, and F. Bremond, “Videobased event recognition: Activity representation and probabilistic recognition methods,” Comput. Vision Image Understand. 96 (2),129–162 (2003).Google Scholar
  33. 33.
    G. West, P. Peursum, and S. Venkatesh, “Combining image regions and human activity for indirect object recognition in indoor wide-angle views,” in Proc. IEEE Int. Conf. on Computer Vision (Beijing, 2005), Vol. 1, pp. 82–89.Google Scholar
  34. 34.
    J. Ohya, J. Yamato, and K. Ishii, “Recognizing human action in time-sequential images using hidden Markov model,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’92) (Champaign, IL, 1992), pp. 379–385.Google Scholar
  35. 35.
    A. Kokaram, N. Rea, R. Dahyot, M. Tekalp, P. Bouthemy, P. Gros, and I. Sezan, “Browsing sports video (trends in sports-related indexing and retrieval work),” IEEE Signal Processing Mag. 23 (2), 47–58 (2006).CrossRefGoogle Scholar
  36. 36.
    M. Barnard and J.-M. Odobez, “Sports event recognition using layered HMMs,” in Proc. IDIAPRR (2005), pp. 05–07.Google Scholar
  37. 37.
    Y. Bengio and P. Frasconi, “An input output HMM architecture,” Adv. Neural Inf. Processing Syst. 7 (NIPS’9), 427–434 (1995).Google Scholar
  38. 38.
    Y. A. Ivanov and A. F. Bobick, “Recognition of visual activities and interactions by stochastic parsing,” IEEE Trans. Pattern Anal. Mach. Intellig. (PAMI) 22 (8), 852–872 (2000).CrossRefGoogle Scholar
  39. 39.
    M. Oliver, B. Rosario, and A. Pentland, “A Bayesian computer vision system for modeling human interactions,” IEEE Trans. Pattern Anal. Mach. Intellig. 22 (8), 831–843 (2000).CrossRefGoogle Scholar
  40. 40.
    A. Galata, N. Johnson, and D. Hogg, “Learning variable length Markov models of behaviour,” Int. J. Comp. Vision Image Understand. 81 (3), 398–413 (2001).MATHCrossRefGoogle Scholar
  41. 41.
    F. Porikli, “Trajectory distance metric using hidden Markov model based representation,” in Proc. PETS Workshop (Prague, 2004).Google Scholar
  42. 42.
    M. Duong, T. Vu, H. H. Bui, H. Phung, Q. Dinh, and V. Svetha, “Activity recognition and abnormality detection with the switching hidden semi-Markov model,” in Proc. IEEE Computer Society Conf. CVPR 2005 (San Diego, 2005).CrossRefGoogle Scholar
  43. 43.
    M. Duong, T. Vu, H. H. Bui, H. Phung, Q. Dinh, and V. Svetha, “Efficient duration and hierarchical modeling for human activity recognition,” Artificial Intellig. 173 (7–8), 830–856 (Elsevier BV, Amsterdam, 2009).CrossRefGoogle Scholar
  44. 44.
    M. Dong and D. He, “A segmental hidden semiMarkov model (HSMM) based diagnostics and prognostics framework and methodology,” Mech. Syst. Signal Processing 21, 2248–2266 (2007).CrossRefGoogle Scholar
  45. 45.
    S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden Markov model: analysis and applications,” Mach. Learn. 32 (1), 41–62 (1998).MATHCrossRefGoogle Scholar
  46. 46.
    H. H. Bui, S. Venkatesh, and G. West, “Policy recognition in the abstract hidden Markov model,” J. Artificial Intellig. Res. 17, 451–499 (2002).MATHMathSciNetGoogle Scholar
  47. 47.
    N. Oliver, E. Horvitz, and A. Garg, “Layered representations for human activity recognition,” in Proc. 4th IEEE Int. Conf. on Multimodal Interfaces (ICMI’02) (Pittsburgh, 2002), pp. 3–8.Google Scholar
  48. 48.
    K. P. Murphy, Hidden Semi-Markov Models (HSMMs), Unpublished Notes (2002).Google Scholar
  49. 49.
    M. J. Russel, and R. K. Moore, “Explicit Modeling of State Occupancy in Hidden Markov Models for Speech Recognition,” in Proc. ICASSP (Tampa, FL, 1985), pp. 5–8.Google Scholar
  50. 50.
    P. Smets and R. Kennes, “The transferable belief model,” Artificial Intellig. 66, 191–234 (1994).MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    E. Ramasso. “Contribution of belief functions to Hidden Markov Models,” in Proc. IEEE Workshop on Machine Learning and Signal Processing (Grenoble, 2009), pp. 1–6.Google Scholar
  52. 52. A.
    S. R. M. Ahouandjinou, E. C. Ezin, C. Motamed, and P. Gouton, “An approach to correcting image distortion by self calibration stereoscopic scene from multiple views,” in Proc. SITIS 2012 (Sorrento, 2012), pp. 389–394.Google Scholar
  53. 53.
    E. Ramasso, M. Rombaut, and D. Pellerin, “Forwardbackward-Viterbi procedures in TBM for state sequence analysis using belief functions,” in Proc. Europ. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (Hammamet, 2007), pp. 405–417.Google Scholar
  54. 54.
    N. Zouba, F. Bremond, and M. Thonnat, “An activity monitoring system for real elderly at home: Validation study,” in Proc. 7th IEEE Int. Conf. on Advanced Video and Signal-Based Surveillance, AVSS (Boston, 2010).Google Scholar
  55. 55.
    P. Robert, E. Castelli, P. C. Chung, T. Chiroux, C. F. Crispim-Junior, P. Mallea, and F. Bremond, “SWEET HOME ICT technologies for the assessment of elderly subjects,” in Ref. No.: IRBM-D-13-00003 (IRBM BioMedical Engineering and Research, 2013).Google Scholar
  56. 56.
    L. Serir, E. Ramasso, and N. Zerhouni, “Time-sliced temporal evidential networks: the case of evidential HMM with application to dynamical system analysis,” IEEE Int. Conf. on Prognostics and Health Management, PHM’11 (Denver, 2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. S. R. M. Ahouandjinou
    • 1
    • 2
  • C. Motamed
    • 1
  • E. C. Ezin
    • 1
  1. 1.Laboratoire d’Informatique Signal et Image de la Côte d’ Opale LISICUniversité du Littoral de la Côte d’Opale (ULCO)Calais, CedexFrance
  2. 2.Unité de Recherche en Informatique et en Sciences Appliquées (URISA)Université d’ Abomey-Calavi (UAC)Porto-NovoBenin

Personalised recommendations