Pattern Recognition and Image Analysis

, Volume 24, Issue 3, pp 400–408 | Cite as

Automatic generation of image analysis programs

Representation, Processing, Analysis and Understanding of Images


In this paper, we introduce a system that generates computer vision programs for a given task, which is specified by regions of interest in a collection of example images. The system relies on a database of operators, which are combined by an automated planning approach in order to create executable programs. We present an early proof-of-concept implementation that relies on a limited database to solve simple tasks, such as finding players in a soccer video or cups on a table. Our experimental evaluation shows that the basic approach is working on relative simple scenarios. Future work will focus on integrating more complex problem descriptions, which require more sophisticated planning strategies in order to compensate for rapidly increasing search spaces.


automatic programming inductive programming generate-and-search machine learning computer vision image analysis object detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, “Online multiperson tracking-by-detection from a single, uncalibrated camera,” IEEE Trans. Pattern Anal. Mach. Intellig. 33(9), 1820–1833 (2011).CrossRefGoogle Scholar
  2. 2.
    N. Crossley, E. Kitzelmann, M. Hofmann, and U. Schmid, “Combining analytical and evolutionary inductive programming,” in Proc. 2nd Conf. on Artificial General Intelligence, AGI 2009 (Atlantis Press, Amsterdam-Paris, 2009), pp. 19–24.Google Scholar
  3. 3.
    J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. C. Whaley, and K. Yelick, “Self-adapting linear algebra algorithms and software,” Proc. IEEE 93(2), 293–312 (2005).CrossRefGoogle Scholar
  4. 4.
    T. D’Orazio, M. Leo, N. Mosca, P. Spagnolo, and P. L. Mazzeo, “A semiautomatic system for ground truth generation of soccer video sequences,” in Proc. 6th IEEE Int. Conf. on Advanced Video and Signal Based Surveillance, AVSS’ 09 (IEEE Computer Soc., Los Alamitos, 2009), pp. 559–564.Google Scholar
  5. 5.
    M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int. J. Comput. Vision 88(2), 303–338 (2010).CrossRefGoogle Scholar
  6. 6.
    MVTec Software GmbH. HALCON 11 (Munich, 2012). (Accessed Feb. 27, 2014).
  7. 7.
    M. Hoffmann, E. Kitzelmann, and U. Schmid, “A unifiying framework for analysis and evaluation of inductive programming systems,” in Proc. 2nd Conf. on Artificial General Intelligence, AGI 2009 (Atlantis Press, Amsterdam-Paris, 2009), pp. 55–60.Google Scholar
  8. 8.
    M. Hofmann, “IGOR2 - an analytical inductive functional programming system: tool demo,” in Proc. 2010 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM’10 (ACM, New York, 2010), pp. 29–31.CrossRefGoogle Scholar
  9. 9.
    C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support vector classification,” Tech. Report (Department of Computer Science, National Taiwan Univ., July 2003). (Accessed Feb. 27, 2014).Google Scholar
  10. 10.
    S.-S. T. Q. Jongmans, F. Santini, M. Sargolzaei, F. Arbab, and H. Afsarmanesh, “Automatic code generation for the orchestration of web services with Reo,” in Service-Oriented and Cloud Computing (Springer, Berlin-Heidelberg, 2012), pp. 1–16.CrossRefGoogle Scholar
  11. 11.
    S. Katayama, “Recent improvements of Magic Haskeller,” in Approaches and Applications of Inductive Programming (Springer, Berlin-Heidelberg, 2010), pp. 174–193.CrossRefGoogle Scholar
  12. 12.
    E. Kitzelmann, “Inductive programming: a survey of program synthesis techniques,” in Approaches and Applications of Inductive Programming (Springer, Berlin-Heidelberg, 2010), pp. 50–73.CrossRefGoogle Scholar
  13. 13.
    J. R. Koza, Genetic Programming: on the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992).MATHGoogle Scholar
  14. 14.
    J. Möhrmann, G. Heidemann, O. Siemoneit, C. Hubig, U.-P. Kaeppeler, and P. Levi. “Context generation with image based sensors: an interdisciplinary enquiry on technical and social issues and their implications for system design,” Proc. World Acad. Sci., Eng. Technol. 74, 1191–1197 (2010).Google Scholar
  15. 15.
    J. Munkres, “Algorithms for the assignment and transportation problems,” J. Soc. Industr. Appl. Math. 5(1), 32–38 (1957).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    G. Olague and L. Trujillo, “Evolutionary-computer-assisted design of image operators that detect interest points using genetic programming,” Image Vision Comput. 29(7), 484–498 (2011).CrossRefGoogle Scholar
  17. 17.
    D. M. W. Powers, “Evaluation: from precision, recall and f-measure to ROC, informedness, markedness & correlation,” J. Mach. Learn. Technol. 2(1), 37–63 (2011).MathSciNetGoogle Scholar
  18. 18.
    J. Rao and X. Su, “A survey of automated web service composition methods,” in Semantic Web Services and Web Process Composition (Springer, Berlin-Heidelberg, 2005), pp. 43–54.CrossRefGoogle Scholar
  19. 19.
    R. Reyes and F. de Sande, “Automatic code generation for GPUs in llc,” J. Supercomput. 58(3), 349–356 (2011).CrossRefGoogle Scholar
  20. 20.
    A. W. O. Rodrigues, F. Guyomarc’h, and J.-L. Dekeyser, “An MDE approach for automatic code generation from UML/MARTE to OpenCL,” Comput. Sci. Eng. 15(1), 46–55 (2013).CrossRefGoogle Scholar
  21. 21.
    F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Programming (Elsevier, Amsterdam, 2006), Vol. 2.MATHGoogle Scholar
  22. 22.
    The MathWorks, Inc. MATLAB R2013b (Natick, 2013). (Accessed Feb. 27, 2014).
  23. 23.
    The MathWorks, Inc. Simulink R2013b (Natick, 2013). (Accessed Feb. 27, 2014).
  24. 24.
    H. Vu and R. Olsson, “Automatic improvement of graph based image segmentation,” in Advances in Visual Computing (Springer, Berlin-Heidelberg, 2012), pp. 578–587.CrossRefGoogle Scholar
  25. 25.
    J. Winn and M. Everingham, The PASCAL visual object classes challenge 2007 (VOC2007) annotation guidelines (2007). (Accessed Feb. 27, 2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Image Understanding and Knowledge-Based SystemsTechnische Universität MünchenGarchingGermany

Personalised recommendations