Pattern Recognition and Image Analysis

, Volume 23, Issue 2, pp 287–295 | Cite as

Face model fitting with learned displacement experts and multi-band images

Applied Problems


Analyzing human faces is a traditional topic in computer vision research. For this task, model based approaches have been proven adequate to extract high-level information in many applications. However, they require a robust estimation of model parameters to work reliably. To tackle this challenge, we train displacement experts that serve as an update function on initial model parameter configurations. Unfortunately, building displacement experts that work robustly even in unconstrained environments is a non-trivial task. Therefore, we rely on a priori information about the structure of human faces by integrating an image representation that reflects the location of several facial components, so called “multi-band images”. By combining multi-band images and learned displacement experts, we propose a novel face model fitting approach. An evaluation on the “Labeled Faces In The Wild” database demonstrates, that this approach provides robust fitting results even in unconstrained environments.


image understanding face model fitting machine learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ahlberg, “Candide-3 — an Updated Parameterized Face,” Technical Report LiTH-ISY-R-2326 (Linköping Univ., 2001).Google Scholar
  2. 2.
    V. Blanz and T. Vetter, “A Morphable Model for the Synthesis of 3D Faces,” in Siggraph Computer Graphics Proc. (Addison Wesley Longman, 1999).Google Scholar
  3. 3.
    T. F. Cootes, G. J. Edwards, and Chris J. Taylor, “Active Appearance Models,” in Proc. European Conf. on Computer Vision (Springer-Verlag, 1998), Vol. 2.Google Scholar
  4. 4.
    T. F. Cootes and C. J. Taylor, “Active Shape Models — Smart Snakes,” in Proc. British Machine Vision Conf. (Springer Verlag, 1992).Google Scholar
  5. 5.
    T. F. Cootes and C. J. Taylor, “On Representing Edge Structure for Model Matching,” Comput. Vision Pattern Recogn., No. 1 (2001).Google Scholar
  6. 6.
    D. Cristinacce and T. F. Cootes, “Feature Detection and Tracking with Constrained Local Models,” in Proc. British Machine Vision Conf. (Edinburgh, 2006).Google Scholar
  7. 7.
    D. Cristinacce and T. F. Cootes, “Boosted Regression Active Shape Models,” in Proc. British Machine Vision Conf. (Warwick, 2007), Vol. 2.Google Scholar
  8. 8.
    R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face Detection in Color Images,” IEEE Trans. Pattern Anal. Mach. Intellig. 24(5) (2002).Google Scholar
  9. 9.
    G. B. Huang, M. Ramesh, T. B., and E. Learned-Miller, “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,” Tech. Rep. 07-49 (University of Massachusetts, Amherst, 2007).Google Scholar
  10. 10.
    V. Popovicib, J. Meyneta, and J.-P. Thiran, “Face Detection with Boosted Gaussian Features” Pattern Recogn. 40(8), 2283–2291 (2007).CrossRefGoogle Scholar
  11. 11.
    O. Jesorsky, K. J. Kirchberg, and R. Frischholz, “Robust Face Detection Using the Hausdorff Distance,” in Proc. Int. Conf. on Audio- and Video-Based Biometric Person Authentication (Springer-Verlag, 2001).Google Scholar
  12. 12.
    F. Kahmaran and M. Gokmen, “Illumination Invariant Face Alignment Using Multi-Band Active Appearance Models,” in Proc. Conf. on Pattern Recognition and Machine Intelligence (Kolkata, 2005).Google Scholar
  13. 13.
    C. Mayer and B. Radig, “Adjusted Pixel Features for Facial Component Classification,” Image Vision Comput. J. 28(5), 762–771 (2009).CrossRefGoogle Scholar
  14. 14.
    M. Beigzahed and M. Vafadoost, “Detection of Face and Facial Features in Digital Images and Video Frames,” in Proc. IEEE Cairo Int. Biomedical Engineering Conf. (Cairo, 2008).Google Scholar
  15. 15.
    M. Pantic and L. J. M. Rothkrantz, “Automatic Analysis of Facial Expressions: The State of the Art,” IEEE Trans. Pattern Anal. Mach. Intellig. 22(12) (2000).Google Scholar
  16. 16.
    M. Pantic, M. F. Valstar, R. Rademaker, and L. Maat, “Web-Based Database for Facial Expression Analysis,” in Proc. IEEE Int. Conf. Multmedia and Expo (ICME’05) (Amsterdam, 2005).Google Scholar
  17. 17.
    P. J. Phillips, Hyeonjoon Moon, S. A. Rizvi, and P. J. Rauss, “The Feret Evaluation Methodology for Face-Recognition Algorithms,” IEEE Trans. Pattern Anal. Mach. Intellig. 22(10), 1090–1104 (2000).CrossRefGoogle Scholar
  18. 18.
    S. L. Phung, A. Bouzerdoum, and D. Chai, “Skin Segmentation Using Color Pixel Classification: Analysis and Comparison,” IEEE Trans. Pattern Anal. Mach. Intellig. 27(1) (2005).Google Scholar
  19. 19.
    S. Romdhani, “Face Image Analysis Using a Multiple Feature Fitting Strategy,” PhD Thesis (Computer Science Department, Univ. of Basel, Basel, CH, Jan. 2005).Google Scholar
  20. 20.
    M. T. Sadeghi, J. V. Kittler, and K. Messer, “Modelling and Segmentation of Lip Area in Face Images,” Vision, Image Signal Processing 149(3) (2002).Google Scholar
  21. 21.
    V. S. Sadeghi and K. Yaghmaie, “Vowel Recognition Using Neural Networks,” Int. J. Comput. Sci. Network Secur. (2006).Google Scholar
  22. 22.
    M. B. Stegmann and R. Larsen, “Multi-Band Modelling of Appearance,” Image Vision Comput. J. 21(1) (2003).Google Scholar
  23. 23.
    P. Tresadern, H. Bhaskar, S. Adeshina, C. Taylor, and T. F. Cootes, “Combining Local and Global Shape Models for Deformable Object Matching,” in Proc. British Machine Vision Conf. (London, 2009).Google Scholar
  24. 24.
    P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” Int. J. Comput. Vision 57(2) (2004).Google Scholar
  25. 25.
    Y. Wang and I. Witten, “Inducing Model Trees for Continuous Classes,” in Proc. European Conf. on Machine Learning (Prague, 1997).Google Scholar
  26. 26.
    H. Wu, X. Liu, and G. Doretto, “Face Alignment Using Boosted Ranking Models,” in Proc. IEEE Computer Soc. Conf. on Computer Vision and Pattern Recognition (Anchorage, 2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Image Understanding and Knowledge-Based Systems GroupTechnische Universität MünchenGarchingGermany

Personalised recommendations