Pattern Recognition and Image Analysis

, Volume 22, Issue 2, pp 360–370 | Cite as

Scale-space line curvature estimation for straight line and circle detection

  • E. V. Semeikina
  • D. V. Yurin
  • A. S. Krylov
  • Kuo-Liang Chung
  • Yong-Huai Huang
Representation, Processing, Analysis, and Understanding of Images


A scale-space algorithm for estimating the local curvature of lines (edges or isolines) is presented. Two variants of edge curvature estimation based on differential invariants are suggested and compared. The first variant uses the edge curvature formula derived in the paper and the second is based on image preprocessing, which allows one to use the isoline curvature formula for edge curvature estimation. An analysis of scale selection needed to reach a desired accuracy is presented. Also, noise influence analysis has been performed. The application of curvature estimation to detection of straight lines and circles is suggested and implemented. Curvature information usage in parametric curve detection speeds up search algorithms and makes the results more stable.


edge curvature isoline curvature scale-space straight line detection circle detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary Shapes,” Pattern Recogn. 13(2), 111–122 (1981).MATHCrossRefGoogle Scholar
  2. 2.
    R. Duda and P. Hart, “Use of the Hough Transformation to Detect Lines and Curves in Pictures,” Comm. ACM 15, 1–15 (1972).CrossRefGoogle Scholar
  3. 3.
    C. G. Ho, R. C. D. Young, C. D. Bradfield, and C. R. Chatwin, “A Fast Hough Transform for the Parametrisation of Straight Lines Using Fourier Methods,” Real-Time Imaging 6(2), 113–127 (2000).CrossRefGoogle Scholar
  4. 4.
    L. Xu and E. Oja, “Randomized Hough Transform,” in Encyclopedia of Artificial Intelligence, Ed. by J. R. R. Dopico, J. Dorado, and A. Pazos (IGI Global Publ., 2008), pp. 1354–1361.Google Scholar
  5. 5.
    T.-C. Chen and K.-L. Chung, “An Efficient Randomized Algorithm for Detecting Circles,” Comp. Vision Image Understand. 83, 172–191 (2001).MATHCrossRefGoogle Scholar
  6. 6.
    L. Florack, B. M. H. Romeny, J. J. Koenderink, and M. A. Viergever, “Scale and the Differential Structure of Images,” Image Vision Comput. 10, 376–388 (1992).CrossRefGoogle Scholar
  7. 7.
    A. P. Witkin, “Scale-Space Filtering,” in Proc. 8th Int. Joint Conf. on Artificial Intelligence (Karlsruhe, Aug. 1983), pp. 1019–1022.Google Scholar
  8. 8.
    J. J. Koenderink and A. J. van Doorn, “The Structure of Images,” Biol. Cybern. 50, 363–370 (1984).MATHCrossRefGoogle Scholar
  9. 9.
    T. Lindeberg, Scale-Space Theory in Computer Vision (Kluwer Acad. Publ., Dordrecht, 1994).CrossRefGoogle Scholar
  10. 10.
    D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,” in Proc. Int. Conf. on Computer Vision (Corfu, Sept. 1999), pp. 1150–1157.Google Scholar
  11. 11.
    E. Tola, V. Lepetit, and P. Fua, “A Fast Local Descriptor for Dense Matching,” Proc. IEEE CVPR (Anchorage, 2008), pp. 1–8.Google Scholar
  12. 12.
    W. K. Pratt, Digital Image Processing: PIKS Scientific Inside, 4th ed. (Wiley-Intersci., 2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. V. Semeikina
    • 1
  • D. V. Yurin
    • 1
  • A. S. Krylov
    • 1
  • Kuo-Liang Chung
    • 2
  • Yong-Huai Huang
    • 3
  1. 1.Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and CyberneticMoscow State UniversityMoscowRussia
  2. 2.Department of Computer Science and Information EngineeringNational Taiwan University of Science and TechnologyTaipei, TaiwanR.O.C.
  3. 3.Institute of Computer and Communication Engineering and Department of Electronic Engineering Jinwen University of Science and TechnologyHsin-Tien, TaipeiTaiwan, R.O.C.

Personalised recommendations