Minimum description length principle in the field of image analysis and pattern recognition

Plenary Papers

DOI: 10.1134/S1054661811020908

Cite this article as:
Potapov, A.S. Pattern Recognit. Image Anal. (2011) 21: 156. doi:10.1134/S1054661811020908

Abstract

Problems of decision criterion in the tasks of image analysis and pattern recognition are considered. Overlearning as a practical consequence of fundamental paradoxes in inductive inference is illustrated with examples. Theoretical (on the base of algorithmic complexity) and practical formulations of the minimum description length (MDL) principle are given. Decrease of the overlearning effect is shown in the examples of modern recognition, grouping, and segmentation methods modified with the MDL principle. Novel possibilities of construction of learnable image analysis algorithms by representation optimization on the base of the MDL principle are described.

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Vavilov State Optical InstituteSt. PetersburgRussia

Personalised recommendations