Systems of neuron image recognition for solving problems of automated diagnoses of neurodegenerative diseases

  • I. Gurevich
  • V. Beloozerov
  • A. Myagkov
  • Yu. Sidorov
  • Yu. Trusova
Software and Hardware for Pattern Recognition and Image Analysis


The study of the functioning and development of the nervous system and its main structural-functional units, neurons, is a critical direction in modern medicine and neurobiology. The key stage in this process is analysis of neurons in microscopic images. The application of methods based on mathematical theory of pattern recognition and image analysis creates wide novel possibilities for analyzing similar representations of experimental data. The question on creating reliable automated systems for recognition and analysis of histological specumens remains, however, open. In the survey, we present results of an analysis of the methods and systems meant for automated neuron image analysis based on studies published in leading scientific journals within the past 25 years.


  1. 1.
    S. J. Allen and D. W. G. Dawbarn, “Morphometric Immunochemical Analysis of Neurons in the Nucleus Basalis of Meynert in Alzheimer’s Disease: 1–2,” in Brain Research (Elsevier, 1988), Vol. 454, Nos. 1–2, pp. 275–281.CrossRefGoogle Scholar
  2. 2.
    A. A. Benali, “A Computorized Image Analysis System for Quantitative Analysis of Cells in Histological Brain Sections: 1–2,” J. Neurosci. Meth. 125(1/2), 33–43 (2003).CrossRefGoogle Scholar
  3. 3.
    S. V. Buldyrev et al., “Description of Microcolumnar Ensembles in Association Cortex and Their Disruption in Alzheimer and Lewy Body Dementias: 10,” Proc. National Acad. Sci. USA 97(10), 5039–5043 (2000).CrossRefGoogle Scholar
  4. 4.
    L. Cruz et al., “A Statistically Based Density Map Method for Identification and Quantification of Regional Differences in Microcolumnarity in the Monkey Brain: 2,” J. Neurosci. Meth. 141(2), 321–332 (2005).CrossRefGoogle Scholar
  5. 5.
    C. Davies et al., “A Quantative Morphometric Analysis of Neuronal and Synaptic Content of the Frontal and Temporal Cortex in Patients with Alzheimer’s Disease: 2,” J. Neurosci. Meth. 78(2), 151–164 (1987).Google Scholar
  6. 6.
    A. Dima, et al., “Automatic Segmentation and Skeletonization of Neurons fro, Confocal Microscopy Images Based on the 3D Wavelet Transform,” IEEE Trans. Image Processing IP(11)(7), 790–801 (2002).CrossRefGoogle Scholar
  7. 7.
    R. P. Duin, “The Science of Pattern Recognition. Achievements and Perspectives,” Challenges Comput. Intell., Studies Comp. Intell. 63, 221–259 (2007).CrossRefGoogle Scholar
  8. 8.
    Y. L. Fok, J. K. Chan, and R. T. Chin, “Automated Analysis of Nerve-Cell Images Using Active Contour Models: 3,” IEEE Trans. Medical Imaging 15(3), 353–368 (1996).CrossRefGoogle Scholar
  9. 9.
    A. Garrido and N. Perez de la Blanca, “Applying Deformable Templates for Cell Image Segmentation,” Pattern Recogn. 33, 821–832 (2000).CrossRefGoogle Scholar
  10. 10.
    I. B. Gurevich, “Descriptive Technique for Image Description, Representation and Recognition,” Pattern Recogn. Image Anal.: Adv. Math. Theory Appl. USSR 1, 50–53 (1991).Google Scholar
  11. 11.
    I. B. Gurevich and V. V. Yashina, “Descriptive Approach to Image Analysis: Image Models: 4,” Pattern. Recogn. Image Appl.: Adv. Math. Theory. Appl. 18(4), 518–541 (2008).Google Scholar
  12. 12.
    I. B. Gurevich, O. Salvetti, and Yu. O. Trusova, “Fundamental Concepts and Elements of Image Analysis Ontology,” Pattern Recogn. Image Anal.: Adv. Math. Theory Appl. 19(4), 603–611 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Inglis, et al., “Automated Identification of Neurons and Their Locations,” J. Microscop. 230(3), 339–352 (2008).MathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Kofahi, et al., “Median Based Robust Algorithms for Tracing Neurons from Noisy Confocal Microscope Images,” IEEE Trans. Inf. Tech. Biomed. 7(4) (2003).Google Scholar
  15. 15.
    J. Leoandroa, R. Cesar-Jra, et al., “Automatic Contour Extraction from 2D Neuron in Ages: 2,” J. Neurosci. Meth. 177(2), 497–509 (2009).CrossRefGoogle Scholar
  16. 16.
    G. Lin et al., “A Hybrid 3D Watershed Algorithm Incorporating Gradient Cues and Object Models for Automatic Segmentation of Nuclei in Confocal Image Stacks: 1,” Cytomet. Pt. A: J. Int. Soc. Anal. Cytol. 56(1), 23–36 (2003).Google Scholar
  17. 17.
    G. Lin, et al., “A Multi-Model Approach to Simultaneous Segmentation and Classification of Heterogeneous Populations of Cell Nuclei in 3D Confocal Microscope Images: 9,” Cytomet. Pt. A: J. Int. Soc. Anal. Cytol. 71(9), 724–736 (2007).Google Scholar
  18. 18.
    G. Lin, et al., “Hierarchical, Model-Based Merging of Multiple Fragments for Improved Three-Dimensional Segmentation of Nuclei: 1,” Cytomet. Pt. A: J. Int. Soc. Anal. Cytol. 63(1), 20–33 (2005).Google Scholar
  19. 19.
    X. Long, W. L. Cleveland, and Y. L. Yao, “A New Preprocessing Approach for Cell Recognition: 3,” IEEE Trans. Inf. Tech. Biomed.: Publ. IEEE Eng. Med. Bio. Sci. 9(3), 407–412 (2005).CrossRefGoogle Scholar
  20. 20.
    N. Malpica et al., “Applying Watershed Algorithms to the Segmentation of Clustered Nuclei: 4,” Cytometr. 28(4), 289–297 (1997).CrossRefGoogle Scholar
  21. 21.
    E. Meijering, “Neuron Tracing in Perspective,” Cytomet. Pt. A: J. Int. Soc. Anal. Cytol. 77, 693–704 (2010).Google Scholar
  22. 22.
    M. Narro et al., “NeuronMetrics: Software for Semiautomated Processing of Cultured Neuron Images,” Brain Res. 1137, 57–75 (2006).Google Scholar
  23. 23.
    X. M. Pardo and D. Cabello, “Biomedical Active Segmentation Guided by Edge Saliency,” Pattern Recogn. Lett. 21, 559–572 (2000).CrossRefGoogle Scholar
  24. 24.
    S. Peng et al., “Neuron Recognition by Parallel Potts Segmentation: 7,” in Proc. of the National Academy of Sciences of the United States of America (2003), Vol. 100, No. 7, pp. 3847–3852.CrossRefGoogle Scholar
  25. 25.
    S. Petushi, “Automated Identification of Microstructures on Histology Studies,” in Proc. IEEE Int. Symp. on Biomedical Imaging: Nano to Macro (Arlington, VA, 2004), Vol. 1, pp. 424–427.Google Scholar
  26. 26.
    S. J. Richerson et al., “An Initial Approach to Segmentation and Analysis of Nerve Cells Using Ridge Detection,” in IEEE Southwest Symp. on Image Analysis Interpretation SSIAI 2008 (Santa Fe, March 24–26, 2008), pp. 2–5.Google Scholar
  27. 27.
    M. Sciarabba et al., “Automatic Detection of Neurons in Large Cortical Slices: 1,” J. Neurosci. Meth. 182(1), 123–140 (2009).CrossRefGoogle Scholar
  28. 28.
    P. G. Selfridgea, “Location Neuron Boundaries in Electron Micrograph Images Using “Primal Sketch” Primitives: 2,” Comp. Vision, Graph., Image Processing 34(2), 156–165 (1986).CrossRefGoogle Scholar
  29. 29.
    O. Sertel, et al., “A Combined Computerized Classification System for Whole-Slide Neuroblastoma Histology: Model-Based Structural Features: D,” Histopath. 1(D), 7–18 (2009).Google Scholar
  30. 30.
    Y. Wang, et al., “Segmentation and Tracking of 3D Neuron Microscopy Images Using a PDE Based Method and Connected Component Labeling Algorithm,” in Proc. IEEE/NLM Life Science Systems and Application Workshop (Bethesda, 2006), pp. 1–2.Google Scholar
  31. 31.
    Yu Wei-Miao et al., “Segmentation of Neural Stem/Progenitor Cells Nuclei within 3D Neurospheres,” Adv. Visual Comp.: Lecture Notes Comp. Sci. 5875/2009, 531–543 (2009).Google Scholar
  32. 32.
    Yaun Xiaosong et al., “Constrained 3D Grayscale Skeletonization Algorithm for Automated Extraction of Dendrites and Spines from Fluorescence Confocal Images,” J. Neuroinf. 7(4), 213 (2009).CrossRefGoogle Scholar
  33. 33.
    C. Zimmer et al., “Segmentation and Tracking of Migrating Cells in Videomicroscopy with Parametric Active Contours,” IEEE Trans. Med. Imaging 21(9), 1212–1221 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. Gurevich
    • 1
  • V. Beloozerov
    • 1
  • A. Myagkov
    • 1
  • Yu. Sidorov
    • 2
  • Yu. Trusova
    • 1
  1. 1.Dorodnicyn Computing CenterRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations