Advertisement

New object detection features in the OpenCV library

  • P. N. DruzhkovEmail author
  • V. L. Erukhimov
  • N. Yu. Zolotykh
  • E. A. Kozinov
  • V. D. Kustikova
  • I. B. Meerov
  • A. N. Polovinkin
Software and Hardware for Pattern Recognition and Image Analysis

Abstract

In this work the object detection problem is considered. A short description of implementations of the object detection system with a discriminatively trained part based model and a gradient boosting trees algorithm (as part of OpenCV library) is given. Application of the gradient boosting trees learner to the object detection problem (in terms of the pedestrian detection problem) is explored.

Keywords

Object Detection Pedestrian Detection OpenCV Library Deformable Part Model Object Detection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. N. Vapnik, Relationships Restoration According to Empirical Data (Nauka, Moscow, 1979) [in Russian].Google Scholar
  2. 2.
    B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for Optimal Margin Classifiers,” in Proc. 5th Ann. ACM Workshop on COLT (ACM, Pittsburgh Press, 1992), pp. 144–152.Google Scholar
  3. 3.
    L. Breiman, “Random Forests,” Mach. Learn. 45(1), 5–32 (2001).zbMATHCrossRefGoogle Scholar
  4. 4.
    N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition (San Diego, 2005), pp. 886–893.Google Scholar
  5. 5.
    M. Enzweiler and D. Gavrila, “Monocular Pedestrian Detection: Survey and Experiments,” IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2179–2195 (2009).CrossRefGoogle Scholar
  6. 6.
    P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object Detection with Discriminatively Trained Part Based Models,” IEEE Trans. Pattern Anal. and Mach. Intell. 32(9), 1627–1645 (2010).CrossRefGoogle Scholar
  7. 7.
    A. Frank and A. Asuncion, UCI Machine Learning Repository (Univ. of California, School of Information and Computer Sci., 2010), Available from: http://archive. ics.uci.edy/ml
  8. 8.
    J. H. Friedman, “Greedy Function Approximation: a Gradient Boosting Machine,” Ann. Stat. 29(5), 1189–1232 (2001).zbMATHCrossRefGoogle Scholar
  9. 9.
    M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL Visual Object Classes (VOC) Challenge,” Int. J. Comp. Vision 88(2), 303–338 (2010).CrossRefGoogle Scholar
  10. 10.
    P. Geurts, D. Ernst, and L. Wehenkel, “Extremely Randomized Trees,” Mach. Learn. 36(1), 3–42 (2006).CrossRefGoogle Scholar
  11. 11.

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • P. N. Druzhkov
    • 1
    Email author
  • V. L. Erukhimov
    • 1
  • N. Yu. Zolotykh
    • 1
  • E. A. Kozinov
    • 1
  • V. D. Kustikova
    • 1
  • I. B. Meerov
    • 1
  • A. N. Polovinkin
    • 1
  1. 1.Lobachevskii State University of Nizhni NovgorodNizhni NovgorodRussia

Personalised recommendations