Laser Physics

, Volume 22, Issue 10, pp 1553–1564 | Cite as

Weak measurements as an instance of non-ideal measurements

Nonlinear and Quantum Optics

Abstract

We introduce weak measurements (WM) as a type of non-ideal measurement (NIM) coupling the system and the measuring device in a specific manner involving a weak interaction followed by post-selection. For the particular case of a WM measurement of spin, we solve the quantum dynamics for the coupled system-meter ensemble exactly for any type of non-ideal measurement. The standard WM regime is obtained as a limiting case; eccentric “semi-weak” values not only appear in other cases of NIM, but can also have a larger magnitude than the usual weak values. A couple of examples comparing the merits of the WM regime and of the exact treatment in situations of potential interest to quantum information applications are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Aharonov and L. Vaidman, J. Phys., Ser. A 24, 2315 (1991).MathSciNetADSGoogle Scholar
  3. 3.
    L. Vaidman, Found. Phys. 26, 895 (1996).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Y. Aharonov and A. Botero, Phys. Rev., Ser. A 72, 052111 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    G. Mitchison, R. Jozsa, and S. Popescu, Phys. Rev., Ser. A 76, 060302 (2007).CrossRefGoogle Scholar
  6. 6.
    J. Tollaksen, J. Phys., Ser. A 40, 9033 (2007).MathSciNetADSMATHGoogle Scholar
  7. 7.
    R. Jozsa, Phys. Rev., Ser. A 76, 044103 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    N. S. Williams and A. N. Jordan, Phys. Rev. Lett. 100, 026804 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    S. Wu and Y. Li, Phys. Rev., Ser. A 83, 052106 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    K. Nakamura, A. Nishizawa, and M. K. Fujimoto, Phys. Rev., Ser. A 85, 012113 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. K. Pan and A. Matzkin, Phys. Rev., Ser A 85, 022122 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Shikano, in Measurements in Quantum Mechanics, Ed. by M. R. Pahlavani (InTech, 2012), Ch. 4.Google Scholar
  13. 13.
    I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, Phys. Rev., Ser. D 40, 2112 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    N. W. M. Ritchie, J. G. Story, and R. G. Hulet, Phys. Rev. Lett. 66, 1107 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    Q. Wang, F. W. Sun, Y. S. Zhang, et al., Phys. Rev., Ser. A 73, 023814 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    G. L. Pryde, J. L. O’Brien. A. G. White, et al., Phys. Rev. Lett. 94, 220405 (2008).CrossRefGoogle Scholar
  17. 17.
    O. Hosten and P. Kwiat, Science 319, 787 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    K. Yokota, T. Yamamoto, M. Koashi, and N. Imoto, New J. Phys. 11, 033011 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    D. J. Starling, P. B. Dixon, A. N. Jordan, and J. C. Howell, Phys. Rev., Ser. A 80, 041803(R) (2009).ADSCrossRefGoogle Scholar
  20. 20.
    P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys. Rev. Lett. 102, 173601 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    O. Zilberberg, A. Romito, and Y. Gefen, Phys. Rev. Lett. 106, 080405 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    S. Kocsis, B. Braverman, S. Ravets, et al., Science 332, 117 (2011).CrossRefGoogle Scholar
  23. 23.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993).MATHGoogle Scholar
  24. 24.
    P. E. Toschek and C. Balzer, Laser Phys. 12, 253 (2002).Google Scholar
  25. 25.
    I. B. Mekhov and H. Ritsch, Laser Phys. 21, 1486 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    A. Matzkin, Eur. J. Phys. 23, 285 (2002).CrossRefMATHGoogle Scholar
  27. 27.
    D. N. Klyshko, Laser Phys. 8, 363 (1998).Google Scholar
  28. 28.
    A. Bassi and G. Ghirardi, 379, 257 (2003).Google Scholar
  29. 29.
    N. Bohr, Atomic Physics and Human Knowledge (Wiley, New York, USA, 1958).MATHGoogle Scholar
  30. 30.
    W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).MathSciNetADSCrossRefMATHGoogle Scholar
  31. 31.
    D. Bohm, Phys. Rev. 85, 166 (1952); ibid. 85, 180 (1952); D. Bohm and B. J Hiley, The Undivided Universe (Routledge, London, 1993).MathSciNetADSCrossRefMATHGoogle Scholar
  32. 32.
    H. D. Zeh, Found. Phys. 40, 1476 (2010).MathSciNetADSCrossRefMATHGoogle Scholar
  33. 33.
    Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Phys. Rev., Ser. B 134, 1410 (1964).MathSciNetADSGoogle Scholar
  34. 34.
    D. Home, A. K. Pan, M. M. Ali, and A. S. Majumdar, J. Phys., Ser. A 40, 13975 (2007); D. Home and A. K. Pan, J. Phys., Ser. A 42, 165302 (2009).MathSciNetADSMATHGoogle Scholar
  35. 35.
    J. Volz, M. Weber, D. Schlenk, et al., Laser Phys. 17, 1007 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique et Modélisation (CNRS Unité 8089)Université de Cergy-PontoiseCergy-Pontoise cedexFrance

Personalised recommendations