Laser Physics

, Volume 22, Issue 9, pp 1439–1444 | Cite as

Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT

  • Ravi Kiran Manapuram
  • S. Aglyamov
  • F. M. Menodiado
  • M. Mashiatulla
  • Shang Wang
  • S. A. Baranov
  • Jiasong Li
  • S. Emelianov
  • K. V. Larin
Laser Methods in Chemistry, Biology, and Medicine


We report a method for measuring shear wave velocity in soft materials using phase stabilized swept source optical coherence tomography (PhS-SSOCT). Wave velocity was measured in phantoms with various concentrations of gelatin and therefore different stiffness. Mechanical waves of small amplitudes (∼10 μm) were induced by applying local mechanical excitation at the surface of the phantom. Using the phase-resolved method for displacement measurement described here, the wave velocity was measured at various spatially distributed points on the surface of the tissue-mimicking gelatin-based phantom. The measurements confirmed an anticipated increase in the shear wave velocity with an increase in the gelatin concentrations. Therefore, by combining the velocity measurements with previously reported measurements of the wave amplitude, viscoelastic mechanical properties of the tissue such as cornea and lens could potentially be measured.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the Elastic Properties of Tissue: the 20 Year Perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected Methods for Imaging Elastic Properties of Biological Tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).CrossRefGoogle Scholar
  3. 3.
    A. Sarvazyan, T. J. Hall, M. W. Urban, et al., “An Overview of Elastography-An Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).CrossRefGoogle Scholar
  4. 4.
    K. W. Hollman, S. Y. Emelianov, J. H. Neiss, et al., “Strain Imaging of Corneal Tissue with an Ultrasound Elasticity Microscope,” Cornea 21(1), 68–73 (2002).CrossRefGoogle Scholar
  5. 5.
    T. Juhasz, F. H. Loesel, R. M. Kurtz, et al., “Corneal Refractive Surgery with Femtosecond Lasers,” IEEE J. Selected Topics Quant. Electron. 5(4), 902–910 (1999).CrossRefGoogle Scholar
  6. 6.
    M. Tanter, D. Touboul, J. L. Gennisson, et al., “High-Resolution Quantitative Imaging of Cornea Elasticity Using Supersonic Shear Imaging,” Med. Imaging, IEEE Trans. 28(12), 1881–1893 (2009).CrossRefGoogle Scholar
  7. 7.
    I. F. Comaish and M. A. Lawless, “Progressive Post-LASIK Keratectasia: Biomechanical Instability or Chronic Disease Process?,” J. Cataract. Refract. Surg. 28(12), 2206–2213 (2002).CrossRefGoogle Scholar
  8. 8.
    W. J. Dupps, Jr., “Biomechanical Modeling of Corneal Ectasia,” J. Refract. Surg. 21(2), 186–190 (2005).Google Scholar
  9. 9.
    J. Liu and C. J. Roberts, “Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurement: Quantitative Analysis,” J. Cataract. Refract. Surg. 31(1), 146–155 (2005).CrossRefGoogle Scholar
  10. 10.
    S. J. Kirkpatrick and M. J. Cipolla, “High Resolution Imaged Laser Speckle Strain Gauge for Vascular Applications,” J. Biomed. Opt. 5(1), 62–71 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    D. Duncan and S. Kirkpatrick, “Performance Analysis of a Maximum-Likelihood Speckle Motion Estimator,” Opt. Express. 10(18), 927–941 (2002).ADSGoogle Scholar
  12. 12.
    D. D. Duncan and S. J. Kirkpatrick, “Processing Algorithms for Tracking Speckle Shifts in Optical Elastography of Biological Tissues,” J. Biomed. Opt. 6(4), 418–426 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    S. Rigozzi, R. Müller, and J. G. Snedeker, “Local Strain Measurement Reveals a Varied Regional Dependence of Tensile Tendon Mechanics on Glycosaminoglycan Content,” J. Biomechan. 42(10), 1547–1552 (2009).CrossRefGoogle Scholar
  14. 14.
    S. J. Kirkpatrick, R. K. Wang, D. D. Duncan, et al., “Imaging the Mechanical Stiffness of Skin Lesions by in vivo Acousto-Optical Elastography,” Opt. Express. 14(21), 9770–9779 (2006ADSCrossRefGoogle Scholar
  15. 15.
    G. Le Goualher, A. Perchant, M. Genet, et al., Towards Optical Biopsies with an Integrated Fibered Confocal Fluorescence Microscope (Springer Berlin/Heidelberg, 2004).Google Scholar
  16. 16.
    J. G. Snedeker, A. Ben Arav, Y. Zilberman, et al., “Functional Fibered Confocal Microscopy: A Promising Tool for Assessing Tendon Regeneration,” Tissue Eng., Part C 15(3), 485–491 (2009).CrossRefGoogle Scholar
  17. 17.
    J. Schmitt, “OCT Elastography: Imaging Microscopic Deformation Andstrain of Tissue,” Opt. Express. 3(6), 199–211 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    J. Rogowska, N. Patel, S. Plummer, et al., “Quantitative Optical Coherence Tomographic Elastography: Method for Assessing Arterial Mechanical Properties,” Br. J. Radiol. 79(945), 707–711 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Rogowska, N. A. Patel, J. G. Fujimoto, et al., “Optical Coherence Tomographic Elastography Technique for Measuring Deformation and Strain of Atherosclerotic Tissues,” Heart 90(5), 556–562 (2004).CrossRefGoogle Scholar
  20. 20.
    B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, et al., “In vivo Dynamic Optical Coherence Elastography Using a Ring Actuator,” Opt. Express. 17(24), 21762–21772 (2009).CrossRefGoogle Scholar
  21. 21.
    X. Liang, S. G. Adie, R. John, et al., “Dynamic Spectral-Domain Optical Coherence Elastography for Tissue Characterization,” Opt. Express. 18(13), 14183–14190 (2010).CrossRefGoogle Scholar
  22. 22.
    X. Liang, A. L. Oldenburg, V. Crecea, et al., “Optical Micro-Scale Mapping of Dynamic Biomechanical Tissue Properties,” Opt. Express. 16(15), 11052–11065 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler Optical Coherence Elastography for Real Time Strain Rate and Strain Mapping of Soft Tissue,” Appl. Phys. Lett. 89(14), 144103–3 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, et al., “Assessment of Corneal Dynamics with High-Speed Swept Source Optical Coherence Tomography Combined with an Air Puff System,” Opt. Express. 19(15), 14188–14199 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    C. Li, Z. Huang, and R. K. Wang, “Elastic Properties of Soft Tissue-Mimicking Phantoms Assessed by Combined Use of Laser Ultrasonics and Low Coherence Interferometry,” Opt. Express. 19(11), 10153–10163 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    H.-J. Ko, W. Tan, R. Stack, et al., “Optical Coherence Elastography of Engineered and Developing Tissue,” Tissue Eng. 12(1), 63–73 (2006).CrossRefGoogle Scholar
  27. 27.
    R. K. Manapuram, N. Sudheendran, V. R. Manne, et al., “3D Assessment of Mechanical Wave Propagation in the Crystalline Eye Lens Using PhS-SSOCT,” Proc. SPIE 7885, 78851V–9.Google Scholar
  28. 28.
    R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-Sensitive Swept Source Optical Coherence Tomography for Imaging and Quantifying of Microbubbles in Clear and Scattering Media,” J. Appl. Phys. 105(10), 102040 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    R. Manapuram, V. Manne, and K. Larin, “Development of Phase-Stabilized Swept-Source OCT for the Ultrasensitive Quantification of Microbubbles,” Laser Phys. 18(9), 1080–1086 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    M. Gora, K. Karnowski, M. Szkulmowski, et al., “Ultra High-Speed Swept Source OCT Imaging of the Anterior Segment of Human Eye at 200 kHz with Adjustable Imaging Range,” Opt. Express. 17(17), 14880–14894 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    T. J. Hall, M. Bilgen, M. F. Insana, et al., “Phantom Materials for Elastography, Ultrasonics, Ferroelectrics and Frequency Control,” IEEE Trans. 44(6), 1355–1365 (1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Ravi Kiran Manapuram
    • 1
  • S. Aglyamov
    • 2
  • F. M. Menodiado
    • 3
  • M. Mashiatulla
    • 3
  • Shang Wang
    • 3
  • S. A. Baranov
    • 3
  • Jiasong Li
    • 3
  • S. Emelianov
    • 2
  • K. V. Larin
    • 1
    • 3
    • 4
  1. 1.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA
  2. 2.Department of Biomedical EngineeringUniversity of Texas at AustinAustinUSA
  3. 3.Department of Biomedical EngineeringUniversity of HoustonHoustonUSA
  4. 4.Institute of Optics and BiophotonicsSaratov State UniversitySaratovRussia

Personalised recommendations