Advertisement

Laser Physics

, Volume 22, Issue 4, pp 791–796 | Cite as

Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

  • M. -T. TsaiEmail author
  • F. -Y. Chang
Laser Methods in Chemistry, Biology, and Medicine

Abstract

In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ∼240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

Keywords

Optical Coherence Tomography Hair Follicle Laser Phys Laser Physics Face Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, Laser Phys. Lett. 8, 617 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).Google Scholar
  3. 3.
    D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, Nature Photon. 1, 709 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    M. Bonesi, S. Matcher, and I. Meglinski, Laser Phys. 20, 1491 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    H. Ullah, M. Atif, S. Firdous, M. S. Mehmood, M. Ikram, C. Kurachi, C. Grecco, G. Nicolodelli, and V. S. Bagnato, Laser Phys. Lett. 7, 889 (2010).CrossRefGoogle Scholar
  6. 6.
    R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, Laser Phys. Lett. 8, 164 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    H. Q. Zhong, Z. Y. Guo, H. J. Wei, C. C. Zeng, H. L. Xiong, Y. H. He, and S. H. Liu, Laser Phys. Lett. 7, 315 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    H. Q. Zhong, Z. Y. Guo, H. J. Wei, J. L. Si, L. Guo, Q. L. Zhao, C. C. Zheng, H. L. Xiong, Y. H. He, and S. H. Liu, Laser Phys. Lett. 7, 388 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, Laser Phys. Lett. 8, 71 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, Laser Phys. Lett. 8, 247 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    X. Guo, Z. Y. Guo, H. J. Wei, H. Q. Yang, Y. H. He, S. S. Xie, G. Y. Wu, H. Q. Zhong, L. Q. Li, and Q. L. Zhao, Laser Phys. 20, 1849 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    I. V. Meglinski, C. Buranachai, and L. A. Terry, Laser Phys. Lett. 7, 307 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    M. T. Tsai, F. Y. Chang, Y. J. Lee, J. D. Lee, H. C. Wang, and C. K. Lee, Opt. Express 19, 7559 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, Laser Phys. Lett. 8, 629 (2011).CrossRefGoogle Scholar
  15. 15.
    B. Veksler, E. Kobzev, M. Bonesi, and I. Meglinski, Laser Phys. Lett. 5, 236 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M. Bonesi, S. G. Proskurin, and I. V. Meglinski, Laser Phys. 20, 891 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    J. Lauri, A. V. Bykov, A. V. Priezzhev, and R. Myllylá, Laser Phys. 21, 813 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    C. Macdonald and I. Meglinski, Laser Phys. Lett. 8, 324 (2011).CrossRefGoogle Scholar
  19. 19.
    M. Yamanari, S. Makita, and Y. Yasuno, Opt. Express 16, 5892 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).CrossRefGoogle Scholar
  21. 21.
    S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, Opt. Express 11, 3598 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    M. Wojtkowski, V. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, Opt. Express 12, 2435 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, Opt. Express 11, 2953 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    R. K. Manapuram, V. G. R. Manne, and K. V. Larin, Laser Phys. 18, 1080 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, Opt. Express 18, 13964 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. Da Silva, Opt. Lett. 23, 228 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    U. Morgner, W. Drexler, F. X. Kártner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111 (2000).Google Scholar
  29. 29.
    S. Makita, T. Fabritius, and Y. Yasuno, Opt. Express 16, 8406 (2008).Google Scholar
  30. 30.
    R. K. Wang and L. An, Opt. Express 17, 8926 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, Opt. Express 17, 12385 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, Appl. Phys. Lett. 89, 073901 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, Opt. Express 15, 6121 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, Opt. Express 16, 2547 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    C. M. Eigenwillig, B. R. Biederman, G. Palte, and R. Huber, Opt. Express 16, 8916 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, Opt. Lett. 32, 2049 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    A. A. Moiseev, G. V. Gelikonov, E. A. Mashcovitch, and V. M. Gelikonov, Laser Phys. Lett. 7, 505 (2010).ADSCrossRefGoogle Scholar
  39. 39.
    M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, Y.-M. Wang, and C. C. Yang, Opt. Express 16, 15847 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Electrical EngineeringChang Gung UniversityTao-YuanTaiwan
  2. 2.Graduate Institute of Medical MechatronicsChang Gung UniversityTao-YuanTaiwan
  3. 3.Biomedical Engineering Research CenterChang Gung UniversityTao-YuanTaiwan

Personalised recommendations