Advertisement

Laser Physics

, Volume 22, Issue 1, pp 331–337 | Cite as

Photonic spectral density of coupled optical cavities

  • K. ZieglerEmail author
Fundamental Problems

Abstract

We study a pair of anharmonic optical cavities that is connected by an optical fiber. The photonic spectral density characterizes the evolution of the coupled cavities after the system has been prepared in a Fock or N00N state. We evaluate the photonic spectral density within the recursive projection method and find that the anharmonicity leads to a collapse of the low-energy spectrum. The level spacing of the remaining spectrum agrees quite well with that of the harmonic cavities, whereas the spectral weights are strongly affected by the anharmonicity.

Keywords

Laser Phys Laser Physics Optical Cavity Spectral Weight Level Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Bloch, Science 319, 202 (2008).CrossRefGoogle Scholar
  2. 2.
    V. I. Yukalov, Laser Phys. 19, 1 (2009).CrossRefADSGoogle Scholar
  3. 3.
    S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I. Bloch, Science 319, 295 (2008).CrossRefADSGoogle Scholar
  4. 4.
    Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 92, 150401 (2004).CrossRefADSGoogle Scholar
  5. 5.
    M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).CrossRefADSGoogle Scholar
  6. 6.
    C. Kollath, A. M. Läuchli, and E. Altman, Phys. Rev. Lett. 98, 180601 (2007).CrossRefADSGoogle Scholar
  7. 7.
    M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007).CrossRefADSGoogle Scholar
  8. 8.
    S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu, Phys. Rev. Lett. 98, 210405 (2007).CrossRefADSGoogle Scholar
  9. 9.
    M. Eckstein and M. Kollar, Phys. Rev. Lett. 100, 120404 (2008).CrossRefADSGoogle Scholar
  10. 10.
    M. Kollar and M. Eckstein, Phys. Rev. A 78, 013626 (2008).CrossRefADSGoogle Scholar
  11. 11.
    M. Möckel and S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008).CrossRefADSGoogle Scholar
  12. 12.
    V. I. Yukalov, Laser Phys. Lett. 8, 485 (2011).CrossRefADSGoogle Scholar
  13. 13.
    V. I. Yukalov, A. Rakhimov, and S. Mardonov, Laser Phys. 21, 264 (2011).CrossRefADSGoogle Scholar
  14. 14.
    G. Roux, Phys. Rev. A 79, 021608 (2009).CrossRefADSGoogle Scholar
  15. 15.
    M. Rigol, Phys. Rev. A 82, 037601 (2010).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    M. Brune, J. Bernu, C. Guerlin, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, I. Dotsenko, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 101, 240402 (2008).CrossRefADSGoogle Scholar
  17. 17.
    H. Wang, M. Hofheinz, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A.D. OConnell, D. Sank, J. Wenner, A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 101, 240401 (2008).CrossRefADSGoogle Scholar
  18. 18.
    H. Carmichael, Nature Phys. 4, 346 (2008).CrossRefADSGoogle Scholar
  19. 19.
    I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. H. W. Pinske, K. Murr, and G. Rempe, Nature Phys. 4, 382 (2008).CrossRefADSGoogle Scholar
  20. 20.
    A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997).CrossRefADSGoogle Scholar
  21. 21.
    P. Grangier, D. F. Walls, and K. M. Gheri, Phys. Rev. Lett. 81, 2833 (1998).CrossRefADSGoogle Scholar
  22. 22.
    M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Nature Phys. 2, 849 (2006).CrossRefADSGoogle Scholar
  23. 23.
    M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Laser & Photon. Rev. 2, 527556 (2008).CrossRefGoogle Scholar
  24. 24.
    A.-C. Ji, Q. Sun, X. C. Xie, and W. M. Liu, Phys. Rev. Lett. 102, 023602 (2009).CrossRefADSGoogle Scholar
  25. 25.
    K. Ziegler, Phys. Rev. A 81, 034701 (2010).CrossRefADSGoogle Scholar
  26. 26.
    E. T. Jaynes and F. W. Cummings, Proc. Inst. Elect. Eng. 51, 89 (1963).Google Scholar
  27. 27.
    F. W. Cummings, Phys. Rev. 140, A1051 (1965).CrossRefADSGoogle Scholar
  28. 28.
    R. R. Puri and G. S. Argawal, Phys. Rev. A 33, 3610 (1985).CrossRefADSGoogle Scholar
  29. 29.
    V. Buzek and I. Jex, J. Mod. Optics 36, 1427 (1989).CrossRefADSGoogle Scholar
  30. 30.
    M. J. Werner and A. Imamoglu, Phys. Rev. A 61, 011801(R) (1999).CrossRefADSGoogle Scholar
  31. 31.
    K. Ziegler, J. Phys. B: At. Mol. Opt. Phys. 44, 145302 (2011).CrossRefADSGoogle Scholar
  32. 32.
    M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett. 100, 030602 (2008).CrossRefADSGoogle Scholar
  33. 33.
    C. E. Porter, Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965).Google Scholar
  34. 34.
    M. L. Mehta, Random Matrices (Academic Press, New York, 1967).zbMATHGoogle Scholar
  35. 35.
    T. A. Brody, et al., Rev. Mod. Phys. 53, 385 (1981).CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    J. J. Garca-Ripoll, P. Zoller, and J. I. Cirac, J. Phys. B: At. Mol. Opt. Phys. 38, S567 (2005).CrossRefADSGoogle Scholar
  37. 37.
    D. J. Wineland and D. Leibfried, Laser Phys. Lett. 8, 175 (2011).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institut für PhysikUniversität AugsburgAugsburgGermany

Personalised recommendations