Laser Physics

, 21:1491 | Cite as

Numerical solution of time-dependent nonlinear Schrödinger equations using domain truncation techniques coupled with relaxation scheme

  • X. AntoineEmail author
  • C. Besse
  • P. Klein
Physics of Cold Trapped Atoms


The aim of this paper is to compare different ways for truncating unbounded domains for solving general nonlinear one- and two-dimensional Schrödinger equations. We propose to analyze Complex Absorbing Potentials, Perfectly Matched Layers and Absorbing Boundary Conditions. The time discretization is made by using a semi-implicit relaxation scheme which avoids any fixed point procedure. The spatial discretization involves finite element methods. We propose some numerical experiments to compare the approaches.


Computational Domain Laser Phys Laser Physics Soliton Solution Perfectly Match Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Bao, D. Jaksch, and P. Markowich, J. Comput. Phys. 187, 318 (2003).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    W. Bao, “The Nonlinear Schrodinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics,” in Dynamics in Models of Coarsening, Condensation and Quantization, Vol. 9 of IMS Lecture Notes Series (World Sci., Singapore, 2007), p. 215.CrossRefGoogle Scholar
  3. 3.
    S. Selsto and S. Kvaal, J. Phys. B: At. Mol. Opt. Phys. 43, 065004 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    M. Heinen and H. J. Kull, Laser Phys. 20, 581 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle, Comm. Comput. Phys. 4, 729 (2008).Google Scholar
  6. 6.
    X. Antoine, C. Besse, and S. Descombes, SIAM J. Numer. Anal. 43, 2272 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J. Szeftel, Numer. Math. 104, 103 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    X. Antoine, C. Besse, and J. Szeftel, Cubo 11, 29 (2009).MathSciNetzbMATHGoogle Scholar
  9. 9.
    C. Zheng, J. Comput. Phys. 215, 552 (2006).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 78, 026709 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    Z. Xu, H. Han, and X. Wu, J. Comput. Phys. 225, 1577 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 79, 046711 (2009).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    P. Klein, “Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités,” Ph.D. Thesis (Nancy Univ., France, 2010).Google Scholar
  14. 14.
    X. Antoine, C. Besse, and P. Klein, “Absorbing Boundary Conditions for Nonlinear Schrödinger Equations,” SIAM Journal on Scientific Computing 33(2), 1008–1033 (2011).CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Phys. Rep.: Rev. Sec. Phys. Lett. 395, 357 (2004).MathSciNetGoogle Scholar
  16. 16.
    A. Scrinzi, Phys. Rev. A 81, 053845 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    O. Shemer, D. Brisker, and N. Moiseyev, Phys. Rev. A 71, 032716 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    J. Bérenger, J. Comput. Phys. 114, 185 (1994).MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    C. Zheng, J. Comput. Phys. 227, 537 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    C. Besse, SIAM J. Numer. Anal. 42, 934 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    A. Jungel and J.-F. Mennemann, Math. Comput. Simul. (in press).Google Scholar
  22. 22.
    A. Durán and J. M. Sanz-Serna, IMA J. Numer. Anal. 20, 235 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    A. Usman, J. Osman, and D. Tilley, Turk. J. Phys. 28, 17 (2004).Google Scholar
  24. 24.
    L. Di Menza, Math. Mod. Num. Anal. 43, 173 (2009).zbMATHCrossRefGoogle Scholar
  25. 25.
    L. Salasnich, Laser Phys. 19, 642 (2009).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    L. Salasnich, F. Ancilotto, N. Manini, and F. Toigo, Laser Phys. 19, 636 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    V. Yukalov and V. Bagnato, Laser Phys. Lett. 6, 399 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institut Elie Cartan NancyNancy-Université, CNRS UMR 7502, INRIA CORIDA TeamVandoeuvre-lès-NancyFrance
  2. 2.Laboratoire Paul Painlevé, Univ Lille Nord de France, CNRS UMR 8524, INRIA SIMPAF TeamUniversité Lille 1 Sciences et Technologies, Cité ScientifiqueVilleneuve d’Ascq CedexFrance

Personalised recommendations