Laser Physics

, Volume 21, Issue 7, pp 1230–1234 | Cite as

Laser-induced hydrodynamics in water-saturated biotissues: 2. Effect on delivery fiber

  • V. I. Yusupov
  • V. M. Chudnovskii
  • V. N. Bagratashvili
Laser Methods in Chemistry, Biology, and Medicine


The degradation of the end surface of the delivery fiber due to the laser-induced hydrodynamic processes caused by the irradiation of the water-saturated tissue by CW laser with a wavelength of 970 nm and moderate power (1–10 W) is analyzed. It is demonstrated that the temperature in the vicinity of the end surface can be up to several thousand degrees at a laser intensity of about 104 W/cm2. Relatively high temperatures and pressures that are reached upon the collapse of the cavitation microbubbles lead to the formation of the nanosized diamond-phase particles and supercritical water, which also facilitates the degradation of fiber.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, Laser Phys. 20, 1641 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    V. Chudnovskii, V. Bulanov, and V. Yusupov, Photonics 1, 30 (2010).Google Scholar
  3. 3.
    V. M. Chudnovskii, V. A. Bulanov, V. I. Yusupov, V. I. Korskov, and V. S. Timoshenko, Laser Med. 14, 30 (2010).Google Scholar
  4. 4.
    Laser Engineering of Cartilages, Ed. by V. N. Bagratashvili, E. N. Sobol, and A. B. Shekhter (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  5. 5.
    B. I. Sandler, L. N. Sulyandziga, V. M. Chudnovskii, V. I. Yusupov, O. V. Kosareva, and V. C. Timoshenko, Prospects for Treatment of Discogenic Compression Forms of Lumbosacral Radiculitis Using Puncture Nonendoscopic Laser Surgery (Dalnauka, Vladivostok, 2004) [in Russian].Google Scholar
  6. 6.
    B. I. Sandler, L. N. Sulyandziga, V. M. Chudnovskii, V. I. Yusupov, and Y. M. Galin, Bull. Physiol. Pathol. Breath 11, 46 (2002).Google Scholar
  7. 7.
    V. M. Chudnovskii, and V. I. Yusupov, “Method of Laser Intervention Effects in Osteochondrosis,” Patent RF No. 2321373, Byull. Izobret. No. 10 (2008).Google Scholar
  8. 8.
    V. A. Privalov, I. V. Krochek, and A. V. Lappa, SPIE Proc. 4433, 180 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    K. Rink, G. Delacretaz, and R. P. Salathe, Laser Surg Med. 16, 134 (1995).CrossRefGoogle Scholar
  10. 10.
    Laser Surgery: Advanced Characterization, Therapeutics, and Systems II, Ed. by S. N. Joffe and K. Atsumi, Proc. SPIE, Vol. 1200 (Los Angeles, 1990).Google Scholar
  11. 11.
    C. Strunge, R. Brinkmann, G. Flemming, and R. Engelhardt, Laser Surg. Med. 11, 183 (1991).CrossRefGoogle Scholar
  12. 12.
    K. Rink, G. Delacretaz, and R. P. Salathe, Appl. Phys. Lett. 61, 2644 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    K. Rink, G. Delacretaz, and R. P. Salathe, Appl. Phys. Lett. 61, 258 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    T. Asshauer, K. Rink, and G. Delacr’etaz, J. Appl. Phys. 76, 5007 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    T. Asshauer and G. Delacretaz, Laser Med. Sci. 12, 157 (1997).CrossRefGoogle Scholar
  16. 16.
    E. Sobol, O. Zakharkina, A. Baskov, A. Shekhter, I. Borschenko, A. Guller, V. Baskov, A. Omelchenko, and A. Sviridov, Laser Phys. 19, 825 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, Laser Phys. Lett. 6, 753 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    M. Sirotyuk, Acoustic Cavitation (Nauka, Moscow, 2008) [in Russian].Google Scholar
  19. 19.
    S. Kenneth, The Chemistry of Ultrasound (Suslick. Enc. Brit., Chicago, 1994).Google Scholar
  20. 20.
    V. N. Bagratashvili, A. N. Konovalov, A. A. Novitskiy, M. Poliakoff, and S. I. Tsypina, Russ. J. Phys. Chem. B 3, 1154 (2009).CrossRefGoogle Scholar
  21. 21.
    J. Schwan, S. Ulrich, V. Batori, and H. Ehrhardt, J. Appl. Phys. 80, 440 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    D. S. Knight and W. B. J. Mater. Res. 4, 385 (1989).Google Scholar
  23. 23.
    E. M. Galimov, A. M. Kudin, V. N. Skorobogatsky, V. G. Plotnichenko, O. L. Bondarev, B. G. Zarubin, V. V. Strazdovsky, A. S. Aronin, A. V. Fisenko, I. V. Bykov, and A. Y. Barinov, Dokl. Akad. Nauk 395, 187 (2004) [Dokl. Phys. 49, 150 (2004)].Google Scholar
  24. 24.
    S. R. J. Pearce, S. J. Henley, F. Claeyssens, P. W. May, K. R. Hallam, J. A. Smith, and K. N. Rossera, Diam. Relat. Mater. 13, 661 (2004).CrossRefADSGoogle Scholar
  25. 25.
    L. Yang, P. W. May, L. Yinb, J. A. Smith, and K. N. Rosser, Diam. Relat. Mater. 16, 725 (2007).CrossRefADSGoogle Scholar
  26. 26.
    A. Kh. Khachatryan, S. G. Aloyan, P. W. May, R. Sargsyan, V. A. Khachatryan, and V. S. Baghdasaryan, Diam. Relat. Mater. 17, 931 (2008).CrossRefADSGoogle Scholar
  27. 27.
    K. W. Sun, J. Y. Wang, and T. Y. Ko, J. Nanopart. Res. 10, 115 (2008).CrossRefGoogle Scholar
  28. 28.
    D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, J. Mod. Opt. 47, 1575 (2000).ADSGoogle Scholar
  29. 29.
    E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 20, 1961 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    S. D. Campbell, T. P. Garvin, I. L. Goodin, Q. Su, and R. Grobe, Laser Phys. 19, 238 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    I. M. Pelivanov, D. S. Kopylova, N. B. Podymova, and A. A. Karabutov, Laser Phys. 19, 1350 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    A. A. Samokhin, V. I. Vovchenko, N. N. Il’ichev, and P. V. Shapkin, Laser Phys. 19, 1187 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. I. Yusupov
    • 1
    • 2
  • V. M. Chudnovskii
    • 1
  • V. N. Bagratashvili
    • 2
  1. 1.Il’ichev Pacific Oceanological Institute, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Institute on Laser and Information TechnologiesRussian Academy of SciencesMoscow oblastRussia

Personalised recommendations