Laser Physics

, Volume 21, Issue 5, pp 906–912 | Cite as

Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters

Interaction of Laser Radiation with Matter


Absorption, electron-phonon coupling and heating of nanoparticles (NPs) under action of short laser pulses on NPs and their cooling after the end of laser action usually has nonlinear character. Nonlinear electron-phonon coupling under action of pico- and femtosecond pulses on metal NPs depends on electron and lattice parameters. Optical (absorption, scattering, extinction) and thermo-physical (coefficient of thermal conductivity, heat capacity, etc.) parameters of different materials of NPs (metals, oxides, semiconductors, etc.) and environments (water, liquids, dielectrics, etc.) depend on temperature and determine nonlinear dynamics of NPs heating and cooling. It is very important to take into account the temperature dependence of optical and thermophysical parameters of NPs and surrounding media under investigation of absorption of laser radiation, electron-phonon coupling, nanoparticle (NP) heating, heat transfer and its cooling after the end of laser pulse action. Theoretical modeling of the processes of laser-NP interaction taking into account temperature dependences of parameters of NPs and environments was carried out. Influence of temperature dependences of these parameters on values and dynamics of the processes is determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, Nano Lett. 9, 4417 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    R. Narayanan and M. A. El-Sayed, Topics Catal. 47, 15 (2008).CrossRefGoogle Scholar
  3. 3.
    N. Halas, Nanomedicine 4, 369 (2009).CrossRefGoogle Scholar
  4. 4.
    X. Huang, P. Jain, and M. A. El-Sayed, Lasers Med. Sci. 23, 217 (2008).CrossRefGoogle Scholar
  5. 5.
    J-W. Kim, E. Shashkov, E. Galanzha, V. Kotarigi, and V. Zharov, Lasers Surg. Med. 39, 622 (2007).CrossRefGoogle Scholar
  6. 6.
    V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, Laser Phys. Lett. 5, 775 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    E. S. Tuchina and V. V. Tuchin, Laser Phys. Lett. 7, 607 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    N. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S1 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, Sov. Phys. JETP 39, 375 (1974).ADSGoogle Scholar
  10. 10.
    S. Brorson, A. Kazeroonian, J. Modera, D. Face, T. Cheng, E. Ippen, M. Dresselhaus, and G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    N. Del Fatti, A. Arbouet, and F. Vallee, Appl. Phys. B 84, 175 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    F. Garwe, U. Bauerschafer, A. Csaki, A. Steinbruck, K. Ritter, and W. Fritzsche, Nanotechnology 19, 055207 (2008).CrossRefGoogle Scholar
  13. 13.
    F. Giammanco, E. Giorgetti, P. Marsili, and A. Giusti, J. Phys. Chem. C 114, 3354 (2010).CrossRefGoogle Scholar
  14. 14.
    H. Muto, K. Miajima, and F. Mafune, J. Phys. Chem. C 112, 5810 (2008).CrossRefGoogle Scholar
  15. 15.
    A. V. Kabashin, Laser Phys. 19, 1136 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    M. Watanabe, H. Takamura, and H. Sugai, Nanoscale Res. Lett. 4, 565 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    A. L. Stepanov, Rev. Adv. Mater. Sci. 4, 123 (2003).Google Scholar
  18. 18.
    A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, Appl. Phys. B 94, 459 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    A. Gaal, I. Bugar, I. Capek, L. Fialova, T. Palszegi, V. Szocs, A. Satka, and F. Uherek, Laser Phys. 19, 961 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    C. Hanley, J. Layne, A. Punnoose, K. Reddy, I. Co- ombs, A. Coombs, K. Feris, and D. Wingett, Nano-technology 19, 295103 (2009).Google Scholar
  21. 21.
    H. Zeng, W. Cai, Y. Hu, and P. Liu, J. Phys. Chem. B 109, 18260 (2005).CrossRefGoogle Scholar
  22. 22.
    L. Wang, W. Zhao, and W. Tan, Nano Res. 1, 99 (2008).CrossRefGoogle Scholar
  23. 23.
    L. Zbroniec, T. Sasaki, and N. Koshizaki, J. Ceram. Process. Res. 6, 134 (2005).Google Scholar
  24. 24.
    S. Khan, Y. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, N. Sharp, and K. J. Watkins, Nanopart. Res. 11, 1421 (2009).CrossRefGoogle Scholar
  25. 25.
    F. Hajiesmaeilbaigi, A. Motamedi, and M. Ruzbehani, Laser Phys. 20, 508 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    C. Meier, A. Gondorf, S. Luttjohann, and A. Lorke, J. Appl. Phys. 101, 103112 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    R. Hergenroder, M. Miclea, and V. Hommes, Nano-technology 17, 4065 (2006).ADSGoogle Scholar
  28. 28.
    Z. Lin and L. V. Zhigilei, Proc. SPIE 6261, 62610U (2006).ADSCrossRefGoogle Scholar
  29. 29.
    Z. Lin and L. V. Zhigilei, Appl. Surf. Sci. 253, 6295 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    Z. Lin, L. V. Zhigilei, and V. V. Celli, Phys. Rev. B 77, 075133 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    Tables of Physical Quantities, Ed. by I. Grigoriev and E. Meilikhov (Atomizdat, Moscow, 1991) [in Russian].Google Scholar
  32. 32.
    F. Kreith and W. Z. Black, Basic Heat Transfer (Harper Row, New York, 1980).Google Scholar
  33. 33.
    V. K. Pustovalov and V. A. Babenko, Laser Phys. Lett. 1, 516 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    V. K. Pustovalov and V. A. Babenko, Laser Phys. Lett. 2, 84 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    P. Jain, K. Lee, I. El-Sayed, and M. El-Sayed, J. Phys. Chem. B 110, 7238 (2006).CrossRefGoogle Scholar
  36. 36.
    V. Pustovalov, Chem. Phys. 308, 103 (2005).ADSCrossRefGoogle Scholar
  37. 37.
    W. W. Duley, Laser Processing and Analysis of Materials (Plenum, New York, 1983).Google Scholar
  38. 38.
    Yu. Lingart, V. Petrov, and N. Tikhonova, Teplofiz. Vysok. Temp. 20, 872 (1982).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Belarusian National Technical UniversityMinskBelarus

Personalised recommendations