Advertisement

Laser Physics

, Volume 21, Issue 4, pp 813–817 | Cite as

Experimental study of the multiple scattering effect on the flow velocity profiles measured in Intralipid phantoms by DOCT

  • J. LauriEmail author
  • A. V. Bykov
  • A. V. Priezzhev
  • R. Myllylä
Advanced Laser Technologies

Abstract

Time domain Doppler Optical Coherence Tomography (DOCT) technique was applied to measure flow velocity profiles in highly scattering media. We analyzed the distortions of the measured velocity profiles of the 1% Intralipid solution flow embedded into the scattering medium at different embedding depths. For this purpose a tissue phantom consisting of a plain glass capillary (inner diameter 0.3 mm) embedded into a slab of Intralipid solution mimicking human skin was designed. The measured flow velocity profiles and behavior of distortions caused by multiple scattering are shown.

Keywords

Laser Physics Doppler Frequency Intralipid Flow Velocity Profile Multiple Scattering Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. J. Wang, T. E. Milner, and J. S. Nelson, Opt. Lett. 20, 1337 (1995).CrossRefADSGoogle Scholar
  2. 2.
    S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, Opt. Express 1, 424 (1997).CrossRefADSGoogle Scholar
  3. 3.
    J. Walther, G. Mueler, H. Morawietz, and E. Koch, Sens. Actuat. A 156, 14 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Schmoll, C. Kolbitsch, and R. A. Leigeb, Opt. Express 17, 4166 (2009).CrossRefADSGoogle Scholar
  5. 5.
    S. Makita, T. Fabritius, and Y. Yasuno, Opt. Lett. 33, 836 (2008).CrossRefADSGoogle Scholar
  6. 6.
    M. Bonesi, S. Matcher, and I. Meglinski, Laser Phys. 20, 1491 (2010).CrossRefADSGoogle Scholar
  7. 7.
    B. Veksler, E. Kobzev, M. Bonesi, and I. Meglinski, Laser Phys. Lett. 5, 236 (2008).CrossRefADSGoogle Scholar
  8. 8.
    T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, and T. E. Milner, Phys. Med. Biol. 43, 3045 (1998).CrossRefGoogle Scholar
  9. 9.
    J. Lauri, M. Wang, M. Kinnunen, and R. Myllyl Proc. SPIE 6863, 68630F (2008).CrossRefADSGoogle Scholar
  10. 10.
    Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, IEEE J. Sel. Top. Quantum Electron. 5, 1134 (1999).CrossRefGoogle Scholar
  11. 11.
    H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, Appl. Opt. 30, 4507 (1991).CrossRefADSGoogle Scholar
  12. 12.
    A. V. Bykov, M. Yu Kirillin, and A. V. Priezzhev, Quantum Electron. 35, 1079 (2005).CrossRefADSGoogle Scholar
  13. 13.
    H. T. Yura, L. Thrane, and P. E. Andersen, Proc. SPIE-OSA 5861, 58610B–1 (2005).CrossRefADSGoogle Scholar
  14. 14.
    J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, J. Phys. D: Appl. Phys. 38, 2597 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • J. Lauri
    • 1
    Email author
  • A. V. Bykov
    • 1
    • 2
  • A. V. Priezzhev
    • 2
  • R. Myllylä
    • 1
  1. 1.University of Oulu, Optoelectronics and Measurement Techniques LaboratoryUniversity of OuluOuluFinland
  2. 2.Physics Department and International Laser CenterMoscow State UniversityMoscowRussia

Personalised recommendations