Skip to main content
Log in

Continuous-wave quantum cascade lasers absorption spectrometers for trace gas detection in the atmosphere

  • Advanced Laser Technologies
  • Published:
Laser Physics

Abstract

Mid infra-red absorption spectrometry based on continuous-wave distributed feedback (DFB) quantum cascade laser (QCL) is more and more widely used for trace gas detection and pollution monitoring. The main advantages of this technique are high sensitivity, high selectivity and a potential for extreme compactness. Various examples of trace gas detection for atmospheric detection will be presented in this paper. Commercial QCLs available on the shelves were first implemented. A cryogenic QCL emitting at 6.7 μm was used to demonstrate the detection of water vapor and its isotopes. A room-temperature QCL was then used to simultaneously detect methane and nitrous oxide at 7.9 μm. Recently, we have developed a room-temperature top grating DFB QCL designed around 4.5 μm for the demonstration of N2O detection in the ppb range. Atmospheric applications of these spectrometers will be presented. The improvements of QCL performances make it now possible to develop instruments that are more and more compact and therefore compatible with in situ applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Durry, N. Amarouche, V. Zéninari, B. Parvitte, T. Lebarbu, and J. Ovarlez, Spectrochim. Acta A 60, 3371 (2004).

    Article  ADS  Google Scholar 

  2. G. Durry, V. Zéninari, B. Parvitte, T. Le Barbu, F. Lefevre, J. Ovarlez, and R. R. Gamache, J. Quant. Spectrosc. Radiat. Transf. 94, 387 (2005).

    Article  ADS  Google Scholar 

  3. L. Joly, B. Parvitte, V. Zéninari, and G. Durry, Appl. Phys. B, Lasers Opt. 86, 743 (2007).

    Article  ADS  Google Scholar 

  4. B. Parvitte, L. Joly, V. Zéninari, and D. Courtois, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 60, 3285 (2004).

    Article  ADS  Google Scholar 

  5. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, Appl. Opt. 43, 2257 (2004).

    Article  ADS  Google Scholar 

  6. S. Wright, G. Duxbury, and N. Langford, Appl. Phys. B: Lasers Opt. 85, 243 (2006).

    Article  ADS  Google Scholar 

  7. S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, J. Appl. Phys. 104, 093115 (2008).

    Article  ADS  Google Scholar 

  8. B. Grouiez, B. Parvitte, L. Joly, and V. Zeninari, Opt. Lett. 34, 181 (2009).

    Article  ADS  Google Scholar 

  9. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Quantum Cascade Laser Sci. 264, 553 (1994).

    Google Scholar 

  10. M. Carras and A. De Rossi, “Laser semi-conducteur á contre-réaction répartie forte,” (FR)/Applicant: THA-LES S. A. (FR), 07 03389.

  11. M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, Appl. Phys. Lett. 93, 011109 (2008).

    Article  ADS  Google Scholar 

  12. V. Zeninari, B. Parvitte, L. Joly, T. Le Barbu, N. Amarouche, and G. Durry, Appl. Phys. B: Lasers Opt. 85, 265 (2006).

    Article  ADS  Google Scholar 

  13. D. T. Shindell, Geophys. Res. Lett. 28, 1551 (2001).

    Article  ADS  Google Scholar 

  14. D. B. K. Davidoff, E. J. Hintsa, J. G. Anderson, and D. W. Keith, Nature 402, 399 (1999).

    Article  ADS  Google Scholar 

  15. K. H. Rosenlof, Science 302, 1691 (2003).

    Article  Google Scholar 

  16. L. Joly, V. Zéninari, B. Parvitte, D. Courtois, and G. Durry, Opt. Lett. 31, 143 (2006).

    Article  ADS  Google Scholar 

  17. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R. R. Gamache, A. Gold- man, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, J. Quant. Spectrosc. Rad. Transf. 96, 139 (2005).

    Article  ADS  Google Scholar 

  18. L. Joly, B. Parvitte, V. Zéninari, D. Courtois, and G. Durry, J. Quant. Spectrosc. Rad. Transf. 102, 129 (2006).

    Article  ADS  Google Scholar 

  19. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: the Physical Science Basis, Summary for Policymakers (IPCC, 2007).

  20. A. R. Mosier, Biol. Fertil. Soils 27, 221 (1998).

    Article  Google Scholar 

  21. L. Joly, C. Robert, B. Parvitte, V. Catoire, G. Durry, G. Richard, B. Nicoullaud, and V. Zéninari, Appl. Opt. 47, 120 (2008).

    Article  Google Scholar 

  22. C. Robert, Appl. Opt. 46, 5408 (2007).

    Article  ADS  Google Scholar 

  23. P. Laville, C. Jambert, P. Cellier, and R. Delmas, Agric. Forest Meteorol. 96, 19 (1999).

    Article  Google Scholar 

  24. T. Mitsui, M. Miyamura, A. Matsunami, K. Kitagawa, and N. Arai, Clin. Chem. 43, 1993 (1997).

    Google Scholar 

  25. R. Knowles, Microbiol Rev. 46, 43 (1982).

    Google Scholar 

  26. J. I. Prosser, Nitrification (IRL, 1986).

  27. J. M. Duxbury, D. R. Bouldin, R. E. Terry, and R. L. Tate III, Nature 298, 462 (1982).

    Article  ADS  Google Scholar 

  28. H. Flessa, R. Ruser, R. Schilling, N. Loftfield, J. C. Munch, E. A. Kaiser, and F. Beese, Geoderma 105, 307 (2002).

    Article  Google Scholar 

  29. A. F. Bouwman, Nutr. Cycling Agroecosyst. 46, 53 (1996).

    Article  Google Scholar 

  30. M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, Philos. Trans. R. Soc. London, Ser. A 351, 371 (1995).

    Article  ADS  Google Scholar 

  31. J. Moncrieff, R. Valentini, S. Greco, G. Seufert, and P. Ciccioli, J. Experim. Botany 48, 1133 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Zéninari.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joly, L., Zéninari, V., Decarpenterie, T. et al. Continuous-wave quantum cascade lasers absorption spectrometers for trace gas detection in the atmosphere. Laser Phys. 21, 805–812 (2011). https://doi.org/10.1134/S1054660X11070127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11070127

Keywords

Navigation