Laser Physics

, Volume 21, Issue 2, pp 283–286 | Cite as

Mode-locked Yb-fiber laser with saturable absorber based on carbon nanotubes

Fiber Optics

Abstract

An ytterbium-fiber laser with the self-mode-locking using a saturable absorber based on carbon nanotubes is presented. Original films that contain carbon nanotubes make it possible to generate pulses with a duration of 16 ps and a mean power of up to 10 mW at a wavelength of 1058 nm and a repetition rate of 125 MHz

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Tünnermann, J. Limpert, and S. Nolte, “Ultrashort Pulse Fiber Lasers and Amplifiers, in Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, Heidelberg, 2004), vol. 96, pp. 35–54.CrossRefGoogle Scholar
  2. 2.
    U. Keller, “Semiconductor Nonlinearities for Solid-State Laser Modelocking and Q-Switching,” in Semiconductors and Semimetals (Academic, Boston, 1999), 59A.Google Scholar
  3. 3.
    Y.-J. Song, M.-L. Hu, C.-L. Gu, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 7, 230 (2010).CrossRefADSGoogle Scholar
  4. 4.
    V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 1391 (1991).CrossRefGoogle Scholar
  5. 5.
    S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, Opt. Express 17, 20707 (2009).CrossRefADSGoogle Scholar
  6. 6.
    S. M. Kobtsev, S. V. Kukarin, S. V. Smirnov, and Y. S. Fedotov, Laser Phys. 20, 351 (2010).CrossRefADSGoogle Scholar
  7. 7.
    B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, Laser Phys. Lett. 7, 661 (2010).CrossRefADSGoogle Scholar
  8. 8.
    T. Hertel, Nature Photon. 4, 77 (2010).CrossRefADSGoogle Scholar
  9. 9.
    S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004).CrossRefGoogle Scholar
  10. 10.
    S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, Opt. Lett. 29, 1581 (2004).CrossRefADSGoogle Scholar
  11. 11.
    S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, Photon. Technol. Lett. 17, 750 (2005).CrossRefADSGoogle Scholar
  12. 12.
    A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, V. I. Konov, A. V. Konyashchenko, P. G. Kryukov, and E. M. Dianov, Quantum Electron. 37, 847 (2007).CrossRefADSGoogle Scholar
  13. 13.
    S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, Opt. Express 17, 2358 (2009).CrossRefADSGoogle Scholar
  14. 14.
    E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 95, 111108 (2009).CrossRefADSGoogle Scholar
  15. 15.
    A. Schmidt, Opt. Express 17, 20109 (2009).CrossRefADSGoogle Scholar
  16. 16.
    Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, Appl. Phys. Lett. 81, 975 (2002).CrossRefADSGoogle Scholar
  17. 17.
    P. L. McEuen, Physics World 13, 31 (2000).Google Scholar
  18. 18.
    F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, Nature Nanotechnol. 3, 738 (2008).CrossRefADSGoogle Scholar
  19. 19.
    S. M. Kobtsev and A. A. Pustovskikh, Laser Phys. 14, 1488 (2004).Google Scholar
  20. 20.
    S. Kobtsev, S. Kukarin, S. Smirnov, and Y. Fedotov, Proc. SPIE 7580, 758023 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. M. Kobtsev
    • 1
  • S. V. Kukarin
    • 1
  • Y. S. Fedotov
    • 1
  1. 1.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations